勾股定理有什么用?

弄了半天都不知道勾股定理有什么实际意义啊!

勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).

在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a²+b²=c²

据考证,人类对这条定理的认识,少说也超过 4000 年!

中国最早的一部数学著作——《周髀算经》的开头,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。

在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。

勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。)

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

如此等等。
温馨提示:内容为网友见解,仅供参考
第1个回答  2020-05-08
勾股定理源于生活,贴近现实.它不但揭示了直角三角形三边之间的数量关系,把数与形结合起来,而且可以解决许多与实际生活紧密联系的问题.现举例说明.一、测量问题例1老师要求同学们测量学校旗杆的高度.小明发现旗杆顶端的绳子垂到地面后还多出1m.当他把绳子的下端拉开5m后,发现绳子下端刚好接触地面.你能帮小明求出旗杆的高度吗?分析:根据题意,可以把旗杆与地面看成一个直角三角形的直角边,绳子当做斜边.先设出绳子的长,然后利用勾股定理列出方程求解.解:如图1,设绳子ab长为x
m,则旗杆的高度ac为(x-1)m.在rt△abc中,由勾股定理,得ac2+bc2=ab2,即(x-1)2+52=x2.解得x=13,则x-1=12.故旗杆的高度为12m.说明:测量某些建筑物的高度时,常利用勾股定理列方程求解.二、建筑问题例2某工程队验收工程时,为了检测某建筑物四边形地基的四个墙角是否是直角,分别测量了地基的两边长和一条对角线的长,得到的数据为16m,9m,19m,如图2.请问:这个建筑物是否合格?(是直角则合格,否则不合格)分析:如果满足勾股定理逆定理,说明墙角为直角。
第2个回答  2008-01-06
勾股定理与古代趣题
勾股定理是我国古代数学的一项辉煌成就,在我国古代就出现了一些和勾股定理应用有关的实际问题.请看几例.
一、 折竹抵地
例1(2006年厦门)今有竹高一丈,末折抵地,去本三尺.问折者高几何? (见图1)
分析:此题的意思是:一根竹子,原来高一丈,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处离与原竹子底部距离3尺,问原处还有多高的竹子?
利用勾股定理解决本题,可先画图形,如图,AC+AB=10(尺)
BC=3(尺),求AC的长即可.
解: 已知AC+AB=10(尺)①
BC=3(尺),
由 ,即 ,
可得 ,
所以 ②.
由①+②得:
(尺),
代入②得:
(尺)
所以原处还有4.5尺高的竹子.
二、秋千索长
例2 平地秋千未起,踏板一尺离地.送行二步与人起,五尺人高曾记.仕女佳人蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?
分析:这是商人出身的明代珠算大师程大位(1533-1606年)在他的一部17卷的数学巨著《直指算法统宗》中用词给出的一道题.这词生动地描述绘了少女当秋千的欢快场景,又是一道在当时颇有分量的数学题.
解: 当时,一步合五尺.题意如图3所示,AC=1(踏板一尺离地),CD=10(送行二步),BD=5(五尺人高).
设OA=OB=x为索长,
则在直角△OBE中,OB=x,BE=CD=10,OE=OA+AC-CE=OA+AC-BD=x+1-5=x-4,
由勾股定理得:x2=102+(x-4)2,解得x=14.5,即索长一丈四尺五寸.
三、葭生池中
例3今有法规池一丈,葭升其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?(如图4) 图3

图4 图5
分析:一个边长为一丈的正方形池塘,在正中间长一芦苇,长出水面一尺,有人将芦苇从顶端牵引到岸边,顶端刚好靠岸边,问池塘的有多深,芦苇有多高?
解决本题可根据题意画出图形,如图5,则AB=1丈=10尺,CE=1尺,借助勾股定理求DE、DC的长即可.
解:在Rt△DBE中,BE=5尺,BD=CD=DE+1,由勾股定理,得BC2+DE2=DB2,
即52+DE2=(DE+1)2,解的DE=12,CD=13,
所以水深12吃,葭长13尺.
评注:借助勾股定理解古代数学题,其关键是根据题意画出图形,根据已知写出相应的数据,然后通过勾股定理构造方程等求解.

勾股定理....
生活中的普通人除了考试,勾股定理的用处几乎没有.....
不过工程技术人员用的比较多,比如农村房屋的屋顶构造,就可以用勾股定理来计算,设计工程图纸也要用到勾股定理,在求与圆、三角形有关的数据时,多数可以用勾股定理
物理上也有广泛应用,例如求几个力,或者物体的合速度,运动方向……
古代也是大多应用于工程,例如修建房屋、修井、造车等等……
第3个回答  2020-04-11
在几何上可以判断直角三角形然后就可以运用直角三角形的性质继续推理,是起台阶的作用。
至于应用,在现实生活中可以测量已知直角三角形的边长,在工程设计方面有很大作用。
勾股定理应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。
勾股定理在我们生活中有很大范围的运用.
工程技术人员用的比较多,比如农村房屋的屋顶构造,就可以用勾股定理来计算,设计工程图纸也要用到勾股定理,在求与圆、三角形有关的数据时,多数可以用勾股定理
物理上也有广泛应用,例如求几个力,或者物体的合速度,运动方向……
古代也是大多应用于工程,例如修建房屋、修井、造车等等……
家装时,工人为了判断一个墙角是否标准直角.可以分别在墙角向两个墙面量出30cm,40cm并标记在一个点,然后量这两点间距离是否是50cm.如果超出一定误差,则说明墙角不是直角.
比如
A点有一高杆在其附近B点要把从杆顶引下来的绳固定在此点。就可以算出绳子的长度要求了
在做木工活时,要是有大块的板材要定直角,就用勾股定理。角尺太小,在大板上画的直角误差大。在做焊工
活时,做大的框架,有一定要直角的也是用勾股定理。比如说我要一个直角,就取一个直角边3米,一个直角边4米,让斜边有5
米,那这个角就是直角了。
比如已知两个螺丝之间的位置,我们便可以用勾股定理求出两个螺丝之间的距离。
第4个回答  2008-01-06
- -
比如说~在建筑上判断一个墙角是不是直角啦什么的~...
还可以构建精确的直角一类的...

还有就是...比如说出小学学习平方时也可以练习用~试题用的着~...

大�...

这个问题怎么问到这里来了??

勾股定理的应用
勾股定理的应用如下:1、测量直角三角形边长和角度:勾股定理可以用来确定直角三角形的斜边长,也可以用来计算两侧的直角边的长度。它还可以用来计算三角形角度。2、计算斜率和距离:勾股定理可以用来计算误差,比如在工程学中,测量仪器的精度可以通过勾股定理来检验。3、计算面积和体积:勾股定理可以用来计算...

勾股定理的生活妙用
在建筑和工程领域中,勾股定理可以帮助测量和确定建筑物的稳定性。例如,在设计屋顶的时候,可以使用勾股定理来计算斜坡的长度和高度,以确保屋顶的倾斜度合适。2.导航和测量:勾股定理在导航和测量领域也有广泛应用。它可以用于测量地面上两点之间的距离,特别是当这两点之间存在障碍物时。例如,使用勾股定理...

勾股定理在生活中的应用
勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方和等于斜边长的平方。1、装修问题。工人为了判断一个墙角是否为标准直角,可利用勾股定理进行判断;2、地毯费用问题。在已知高和斜坡长的楼梯表面铺地毯,可利用勾股定理计算地毯的长度。

勾股定理在几何学中的应用有哪些?
4.解决实际问题:勾股定理在实际生活中也有很多应用。例如,测量建筑物的高度、计算斜坡的倾斜度、确定船只的位置等。总之,勾股定理在几何学中的应用非常广泛,它是解决直角三角形相关问题的基础。通过理解和运用勾股定理,我们可以更好地解决各种几何问题。

勾股定理在现实生活中有哪些应用
勾股定理还广泛应用于物理和工程中的其他领域。在力学中,可以用来计算物体的运动轨迹和速度;在电路设计中,可以用来计算导线的长度和电阻值;在机械工程中,可以用来设计齿轮和轴承等零部件的尺寸。此外,在金融计算、图像处理等领域也能见到勾股定理的应用。总之,勾股定理在现实生活中的作用十分广泛,涉及...

勾股定理的应用
勾股定理在生活中的应用有:农村修建房屋、打井,计算屋顶构造时也需要用到勾股定理;设计工程图纸时需要用到勾股定理;物理学中涉及合力、合速度计算时需要用到勾股定理。勾股定理源于生活,贴近现实。它不但揭示了直角三角形三边之间的数量关系,把数与形结合起来,而且可以解决许多与实际生活紧密联系的问题...

勾股定理的现实应用
1、勾股定理在科学研究中的应用 在科学研究中,勾股定理也有广泛的应用。例如在物理学中,勾股定理被用于计算物体的速度、加速度和运动轨迹。在天文学中,科学家们利用勾股定理来测量星体之间的距离和角度,从而帮助研究宇宙结构和运动规律。2、勾股定理的历史和发展 勾股定理最早可以追溯到古代的巴比伦和...

勾股定理的作用
勾股定理的作用:(一)工程技术人员用的比较多,农村房屋的屋顶构造,就用勾股定理来计算,设计工程图纸也要用到勾股定理,在求与圆,三角形有关的数据时,多数可以用勾股定理。(二)物理上也有广泛应用,例如求几个力,或者物体的合速度,运动方向等等。(三)古代也是大多应用于工程,例如修建房屋,...

勾股定理的应用
勾股定理的应用如下:1、勾股定理理解三角形。2、勾股定理与网格问题。3、利用勾股定理解决折叠问题。4、利用勾股定理证明线段的平方关系。5、利用勾股定理解决实际问题——求梯子滑落高度。6、利用勾股定理解决实际问题——求旗杆高度。7、利用勾股定理解决实际问题——求蚂蚁爬行距离。勾股定理是一个基本的...

请简述“勾股定理”在中学数学课程中的作用。
【答案】:“勾股定理”是中学数学中一个非常重要的定理,在中学数学课程中具有重要作用:①“勾股定理”很好地解释了直角三角形中三条边之间的数量关系,将学生对几何的感性认识精确化,向学生渗透数形结合思想,使几何学中有关直角三角形的计算及证明问题迎刃而解;②“勾股定理”在中学数学中有广泛...

相似回答