如何用分部积分法计算

如题所述

设积分域为 x ∈(-∞,+∞)

令:F = (-∞,+∞)∫e^(-x²)dx

同样 F= (-∞,+∞)∫e^(-y²)dy

由于x,y是互不相关的的积分变量,因此:

F² = (-∞,+∞)∫e^(-x²)dx * (-∞,+∞)∫e^(-y²)dy

= [D]∫∫e^(-x²)*dx * e^(-y²)*dy

= [D]∫∫e^[-(x²+y²)]*dx *dy

式中积分域D = {(x,y)|x ∈(-∞,+∞),y∈(-∞,+∞)}

对x,y进行极坐标变换,则:

x²+y² = ρ²;dxdy = ρ*dρ*dθ

F² = [D]∫∫e^[-(x²+y²)]*dx *dy

= [0,+∞)[0,2π]∫∫e^(-ρ²) ρ*dρ*dθ

= [0,2π]∫dθ *(0,+∞)∫e^(-ρ²) ρ*dρ

= 2π* 1/2*[0,+∞)*∫e^(-ρ²) *dρ²

= π

因此 F = (-∞,+∞)∫e^(-x²)dx = √π

扩展资料:

分部积分法

不定积分

设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu [1] 

两边积分,得分部积分公式

∫udv=uv-∫vdu。

称公式⑴为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到.

分部积分公式运用成败的关键是恰当地选择u,v

一般来说,u,v 选取的原则是: 

1、积分容易者选为v。

2、求导简单者选为u。

例子:∫Inx dx中应设U=Inx,V=x

分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。

有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.

可以证明,任何真分式总能分解为部分分式之和。

温馨提示:内容为网友见解,仅供参考
无其他回答

分部积分法怎么求积分?
(uv)'=u'v+uv'得:u'v=(uv)'-uv'两边积分得:∫u'vdx=∫(uv)'dx-∫uv'dx。即:∫u'vdx=uv-∫uv'dx,这就是分部积分公式。也可简写为:∫vdu=uv-∫udv。分部积分法定理 定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(x)区间[a,b]上有界,且只有...

分部积分法的一般步骤,看完就会
步骤一:尝试将函数分部。当选择v=x时,直接应用分部积分公式∫udx=ux-∫xdu。例如,∫arctandx=∫xdarctanx。步骤二:计算微分。若步骤一成立,求出du=u’dx。步骤三:凑微分。当u=x时,将x视为v’,则∫xv’dx=∫xdv。再运用分部积分公式,如∫xcosxdx=∫xdsinx=xsinx-∫sinxdx。步骤四:...

分部积分的计算方法
接下来,我们将被积函数和积分函数代入分部积分公式中,然后进行计算。分部积分公式为∫udv = uv - ∫vdu。四、计算新的不定积分 现在,我们需要计算新的不定积分∫xdf(x)。我们可以使用基本积分公式或部分积分法来计算这个新的不定积分。例如,如果f(x)是多项式,我们可以使用基本积分公式来计算这个...

如何用分部积分法计算
设积分域为 x ∈(-∞,+∞)令:F = (-∞,+∞)∫e^(-x²)dx 同样 F= (-∞,+∞)∫e^(-y²)dy 由于x,y是互不相关的的积分变量,因此:F² = (-∞,+∞)∫e^(-x²)dx * (-∞,+∞)∫e^(-y²)dy = [D]∫∫e^(-x²)*dx * e^(-...

分部积分法具体怎么操作,求解。
(1)替换 x=tan t, -pi\/2<t<pi\/2dx=sec^2 t dt (2)根号(1+x^2)=根号(1+tan t^2)=sec t积分 =积分 sec^3 t dt=积分 sec t sec^2 t dt=积分 sec t d (tan t)(3)分部积分 =sec t * tan t - 积分 tan t * sec t tan t dt=sec t * tan t - 积分 (sec...

分部积分法怎么计算?
解答过程如下:利用分部积分法可求得 ∫xln(x-1)dx =1\/2x²ln(1+x)-1\/2[x²\/2-x+ln(1+x)]+C∫x ln(x-1)dx=x^2\/2* ln(x-1)-∫x^2\/2ln(x-1)'dx =x^2\/2* ln(x-1)-∫x^2\/2(x-1)dx =x^2\/2* ln(x-1)-∫(x^2-x)\/2(x-1)dx-∫x\/2(x-1...

分部积分法怎么求?
分部求导公式:d(uv)\/dx=(du\/dx)v+u(dv\/dx)。分步求导积分法:微积分中的一类积分办法:对于那些由两个不同函数组成的被积函数,不便于进行换元的组合分成两部份进行积分,其原理是函数四则运算的求导法则的逆用。根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。具体操作如...

分部积分法公式
分部积分法的应用步骤如下:1. 选择 u 和 v,其中 u 是整个被积函数中的一部分,dv 是剩余部分。2. 计算 u 的导数 u' 和 dv 的积分 ∫v dx。3. 利用分部积分法公式计算积分。重复使用分部积分法,直到得到易于求解的积分形式或达到停止条件。需要注意的是,在选择 u 和 v 时,通常会选择 ...

分部积分法怎么用?
1.指数型和幂函数结合的,对数函数和幂函数结合的,反三角函数和幂函数结合的这三种是比较典型的用分部积分法算的。2.微积分中的一类积分办法:对于由两个不同函数组成的被积函数,不便于进行换元的组合分成两部分进行积分,其原理是函数四则运算的求导法则的逆用。3.根据组成积分函数的基本函数将积分...

分部积分法的计算公式是什么?
∫xlnxdx=x²lnx\/2-x²\/4+c 计算过程:根据分部积分法的公式,,则设v=x²\/2,u=lnx。则∫lnxd(x²\/2)=∫xlnxdx=x²lnx\/2-∫x²*1\/(2x)dx=x²lnx\/2-∫x\/2dx=x²lnx\/2-x²\/4+c ...

相似回答
大家正在搜