因式分解(1).15+2x-x的平方 (2)x的平方+Y的平方+6X-8Y+25 (3)X的4次-Y的四次 (4)A的3次加B的3次分之

因式分解(1).15+2x-x的平方
(2)x的平方+Y的平方+6X-8Y+25
(3)X的4次-Y的四次因式分解
(4)A的3次加B的3次分之一
(5)X的二分之一+X的二分之一=3,求(1)X的三次+X的负三次(2)X+X负一次-2分之X的平方-X的-2次-3的值

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;

(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;

(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)

=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]

=-2xn-1yn(x2n-y2)2

=-2xn-1yn(xn-y)2(xn+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析 我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解 原式=(a+b)3-3ab(a+b)+c3-3abc

=〔(a+b)3+c3〕-3ab(a+b+c)

=(a+b+c)〔(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解.

解 因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),

所以

说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析 本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解 (1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=〔(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=〔(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)〔b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析 将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解 设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明 本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析 先将两个括号内的多项式分解因式,然后再重新组合.

解 原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明 对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解 设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明 由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9 分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6〔(x4-2x2+1)+2x2〕+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x〕〔3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明 本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析 本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解 原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-06-01
(1).15+2x-x的平方=(5-x)(3+x)

(2)x的平方+Y的平方+6X-8Y+25=x²+6x+9+y²-8y+16=(x+3)²+(y-4)²

(3)X的4次-Y的四次=(x²-y²)(x²+y²)=(x-y)(x+y)(x²+y²)

(4)A的3次加B的-3次=(A+B^-1)(A²-AB^-1+B^-2)

(5)X²+X的负2次=3,
X²+2+X^-2=1
(X+1/X)²=1
∴X+1/X=±1
X²-2+1/X²=5
(X-1/X)²=5
∴X-1/X=±√5
求(1)X的三次+X的负三次
=(X+1/X)(X²-1+1/X²)
=±1*(3-1)
=±2

(2)X+X负一次-2分之X的平方-X的-2次-3的值
(X²-1/X²-3)/(X+1/X-2)
=[(X-1/X)(X+1/X)-3]/(X+1/X-2)
=[(±√5)(±1)-3]/(±1-2)
=(±√5-3)/(-3) 或=3±√5本回答被网友采纳
第2个回答  2012-06-01
15+2x-x的平方
=(x-3)(x+5)
(2)x的平方+Y的平方+6X-8Y+25
=((x+3)²+(y-4)²
3)X的4次-Y的四次因式分解
=(x²+y²)(x+y)(x-y)
(4)A的3次加B的3次分之一
=(A+1/B)(A²-A/B+1/B²)
(5)X的二分之一+X的二分之一=3,求(1)X的三次+X的负三次(2)X+X负一次-2分之X的平方-X的-2次-3的值
没看懂什么意思追问

那里没看懂

追答

X的二分之一+X的二分之一=3
什么意思?

追问

X的二分之一次方加X的二分之一次方=3

追答

你的意思是说√x+√x=3
那不就是2√x=3
x=9/4?

追问

我不会做!!才问的

追答

我是怕你的题目错了,到时候就不好了

追问

没错啊

第3个回答  2012-06-01
1 (5-x)(3+x)
2 原式= (x+3)^2-(Y+4)^2=(x-Y-1)(x+Y+7)

...2)x的平方+Y的平方+6X-8Y+25 (3)X的4次-Y的四次 (4)A的3次加B的...
因式分解(1).15+2x-x的平方(2)x的平方+Y的平方+6X-8Y+25(3)X的4次-Y的四次因式分解(4)A的3次加B的3次分之一(5)X的二分之一+X的二分之一=3,求(1)X的三次+X的负三次(2)X+X... 因式分解(1).15+2x-x的平方(2)x的平方+Y的平方+6X-8Y+25(3)X的4次-Y的四次因式分解(4)A的3...

因式分解的方法?
x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=x^4-2(y^2+z^2)x+y^4+z^4-2y^2z^2 =x^4-2(y^2+z^2)x+y^4+z^4+2y^2z^2-4y^2z^2 =x^4-2(y^2+z^2)x^2+(y^2+z^2)^2-4y^2z^2 =[x^2-(y^2+z^2)]^2-(2yz)^2 =[x^2-(y^2+z^2)+2yz][x^2-(...

因式分解题
1.下列因式分解中,正确的是( )���������(A) 1- 14 x2= 14 (x + 2) (x- 2) (B)4x –2 x2 – 2 = - 2(x- 1)2(C) ( x- y )3 –(y- x) = (x – y) (x – y + 1) ( x –y – 1)(D) x2 –y2 – x + y = ( x + y) (x – y...

数学的分解因式
=(x^2+8x+10)(x+2)(x+6)1. 3x^2+4xy-y^2 =3(x-((2+√7)\/3)y))(x-((2-√7)\/3)y)) (只有在实书范围内才能分解)2. (x^2-2x)^2-7(x^2-2x)+12 =(x^2-2x-4)(x^2-2x-3)=(x-3)(x+1)(x^2-2x-4)3..x^2+x-(a^2-a)=x^2+x-a^2-a =(x^2-...

因式分解的题目
+5x^3+15x-9 解析可根据系数特征进行分组 解原式=(x^4-9)+5x^3+15x =(x^2+3)(x2-3)+5x(x^2+3) =(x^2+3)(x^2+5x-3) 1.下列因式分解中,正确的是( ) (A) 1- 14 x2= 14 (x + 2) (x- 2) (B)4x –2 x2 – 2 = - 2(x- 1)2 (C) ( x- y )3 –(y- x) =...

因式分解
1.12(x+y)^2-4(x+y)-1=(2x+2x-1)(6x+6y+11)2.-x^2y^2+5x^2y+6x^2=-x²(x-6)(x+1)3.x^4+3x^3-28x^2=x²(x+7)(x-4)4.2x^2-6xy-8y^2=2(x-y)(x-4y)5.-9x^2+9xy+10y^2=-(3x+2y)(3x-5y)...

举例说明什么是主元法分解因式
2.因式分解16y+2x^2(y+1)^2+(y-1)^2x^4 分析:本题尚且属于简单例用,只是稍加难度,以y为主元会使原式极其烦琐,而以x为主元的话,原式的难度就大大降低了。 原式=(y-1)^2x^4+2(y+1)^2x^2+16y---【主元法】 =(x^2y^2-2x^2y+x^2+8y)(x^2+2)---【十字相乘法】...

因式分解,求大神
原式=x^3-x^2-10x^2+31x-21 =x^2(x-1)-(x-1)(10x-21)=(x-1)(x^2-10x+21)=(x-1)(x-3)(x-7)原式=(x^3-2x^2y)-(4xy^2-8y^3)=x^2(x-2y)-4y^2(x-2y)=(x-2y)(x^2-4y^2)=(x+2y)(x-2y)^2

因式分解的方法
4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。5、双十字相乘法是一种因式分解方法。对于型如 Ax²+Bxy+Cy²+Dx+Ey+F 的多项式...

关于因式分解的些问题
·q在n的所有这种分解中两因数之差的绝对值最小,我们就称p·q是n的最佳分解,并规定:F(n)=p\/q,例如18可以分解成1×18,2×9,3×6这三种,这是就要F(18)=3\/6=1\/2,给出下列关于F(n)的说法:(1)F(2)=1\/2,(2)F(24)=3\/8,(3)F(27)=3,(4)若n是一个完全平方数,则F(n)=1,其中说法...

相似回答