若一个函数的图像关于直线y=x对称,则有y=f(x)及x=f(y)。
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。
反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
例如:y=x+1
关于y=x对称,即x=y-1,然后交换x,y,得y=x-1
y=x+1关于直线y=x对称的方程为y=x-1
扩展资料:
函数转换为反函数步骤:
1、确定原函数的值域。
2、 解方程解出x。
3、 交换x,y,标明定义域。
例如 y=2x+1,x∈R,则y∈R,可以求出x=(y-1)/2,这样y=2x+1的反函数就是y=(x-1)/2,x∈R
性质
1、函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;
2、函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
3、一个函数与它的反函数在相应区间上单调性一致;
4、大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。
函数的反函数的定义域与值域是什么?
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函...
反函数怎么求定义域和值域
反函数的定义域是原函数的值域,反函数值域是原函数的定义域。只要求出原函数的定义域和值域,就可以求出反函数的定义域和值域。
反函数是一个函数吗?
反函数的定义域与值域分别是原函数的值域与定义域;函数的反函数,本身也是一个函数,由反函数的定义,原函数也是其反函数的反函数,故函数的原函数与反函数互称为反函数。偶函数必无反函数;奇函数如果有反函数,其反函数也是奇函数;原函数与其反函数在他们各自的定义域上单调性相同;他们的图像是关...
反函数的定义域和值域分别是什么?
反函数的定义域和值域分别是原始函数的值域和定义域。1、反函数的定义域和值域分别是原始函数的值域和定义域。逆函数仅存在于确定函数的映射是一对一映射的函数中。如果奇函数有逆函数,则其逆函数也是奇函数。原始函数及其逆函数在各自的定义域中的单调性相同。相互成反函数的图像之间的关系。函数y=f...
反函数的定义域和值域有什么区别?
反函数的定义域是原函数的值域。原函数的定义域是反函数的值域。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y)。反函数x=f-1(y)的定义域、值域...
反函数是什么
反函数是:设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得g(y)=x,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数。一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数...
什么是反函数
反函数是指:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x)。反函数y=f^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数...
反函数的定义域是怎样的?
定义域(domain of definition)指自变量x的取值范围,是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。反函数公式 1、cos(arcsinx)=√(1-x^2)2、arcsin(-x)=-arcsinx 3、arccos(-x)=π-arccosx 4、arctan(-...
什么是反函数,反函数怎么定义?
定义域. [编辑本段]反函数性质 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的必要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a,x∈{0})。
反函数的定义域与值域有什么关系吗?
g(x)(x∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。示例:求y=2x的反函数 用y把x表示出,得到x= g(y)即x=1\/2y,再将x和y互换位置得到y= g(x),即y=1\/2x,就是所求的反函数。