初三数学二次函数知识点总汇

如题所述

一、内容综述:

  四种常见函数的图象和性质总结   图象
特殊点
性质









  与x轴交点

  与y轴交点(0,b)
  (1)当k>0时,y随x的增大而增大;

  (2)当k<0时,y随x的增大而减小.











  与x、y轴交点是原点(0,0)。             
  (1)当k>0时,y随x的增大而增大,且直线经过第一、三象限;

  (2)当k<0时,y随x的增大而减小,且直线经过第二、四象限










 
  与坐标轴没有交点,但与坐标轴无限靠近。
  (1)当k>0时,双曲线经过第一、三象限,在每个象限内,y随x的增大而减小;

  (2) 当k<0时,双曲线经过第二、四象限,在每个象限内,y随x的增大而增大。









  与x轴交点或,其中是方程的解,与y轴交点,顶点坐标是 (-,)。
  (1)当a>0时,抛物线开口向上,并向上无限延伸;对称轴是直线x=-, y最小值=。

  (2)当 a<0时,抛物线开口向下,并向下无限延伸;对称轴是直线x=-, y最大值=

  注意事项总结:

  1.关于点的坐标的求法:

  方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x和y=-x-3的交点坐标,只需解方程组就可以了。

  2.对解析式中常数的认识:

  一次函数y=kx+b (k≠0)、二次函数y=ax2+bx+c(a≠0)及其它形式、反比例函数y=(k≠0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。

  3.对于二次函数解析式,除了掌握一般式即:y=ax2+bx+c((a≠0)之外,还应掌握“顶点式”y=a(x-h)2+ k及“两根式”y=a(x-x1)(x-x2),(其中x1,x2即为图象与x轴两个交点的横坐标)。当已知图象过任意三点时,可设“一般式”求解;当已知顶点坐标,又过另一点,可设“顶点式”求解;已知抛物线与x轴交点坐标时,可设“两根式”求解。总之,在确定二次函数解析式时,要认真审题,分析条件,恰当选择方法,以便运算简便。

  4.二次函数y=ax2与y=a(x-h)2+k的关系:图象开口方向相同,大小、形状相同,只是位置不同。y=a(x-h)2+k图象可通过y=ax2平行移动得到。当h>0时,向右平行移动|h|个单位;h<0向左平行移动|h|个单位;k>0向上移动|k|个单位;k<0向下移动|k|个单位;也可以看顶点的坐标的移动, 顶点从(0,0)移到(h,k),由此容易确定平移的方向和单位。

  二、例题分析:

  例1.已知P(m, n)是一次函数y=-x+1图象上的一点,二次函数y=x2+mx+n的图象与x轴两个交点的横坐标的平方和为1,问点N(m+1, n-1)是否在函数y=-图象上。

  分析:P(m, n)是图象上一点,说明P(m, n)适合关系式y=-x+1,代入则可得到关于m,n的一个关系,二次函数y=x2+mx+n与x轴两个交点的横坐标是方程x2+mx+n=0的两个根,则x1+x2=-m, x1x2=n, 由平方和为1即x12+x22=(x1+x2)2-2x1x2=1,又可得到关于m, n的一个关系,两个关系联立成方程组,可解出m, n,这种利用构造方程求函数系数的思想最为常见。

  解:∵P(m,n)在一次函数y=-x+1的图象上,

  ∴ n=-m+1, ∴ m+n=1.

  设二次函数y=x2+mx+n的图象与x轴的两个交点的横坐标为x1,x2,

  ∴x12+x22=1,

  又∵x1+x2=-m, x1x2=n,

  ∴ (x1+x2)2-2x1x2=1, 即m2-2n=1

 由解这个方程组得:或。

  把m=-3, n=4代入x2+mx+n=0,

  x2-3x+4=0, Δ<0.

  ∴ m=-3, n=4(舍去).

  把m=1, n=0代入x2+mx+n=0,

  x2+x=0, Δ>0

  ∴点N(2,-1),

  把点N代入y=-,当x=2时,y=-3≠-1.

  ∴点N(2,-1)不在图象y=-上。

  说明:这是一道综合题,包括二次函数与一次函数和反比例函数,而且需要用到代数式的恒等变形,与一元二次方程的根与系数关系结合,求出m、n值后,需检验判别式,看是否与x轴有两个交点。当m=-3, n=4时,Δ<0,所以二次函数与x轴无交点,与已知不符,应在解题过程中舍去。是否在y=-图象上,还需把点(2,-1)代入y=-,满足此函数解析式,点在图象上,否则点不在图象上。

  例2.直线 y=-x与双曲线y=-的两个交点都在抛物线y=ax2+bx+c上,若抛物线顶点到y轴的距离为2,求此抛物线的解析式。

  分析:两函数图象交点的求法就是将两函数的解析式联立成方程组,方程组的解既为交点坐标。

  解:∵直线y=-x与双曲线y=-的交点都在抛物线y=ax2+bx+c上,

  由  解这个方程组,得x=±1.

  ∴当x=1时,y=-1.

  当x=-1时,y=1.

  经检验:,都是原方程的解。

  设两交点为A、B,∴A(1,-1),B(-1,1)。

  又∵抛物线顶点到y轴的距离为2,∴ 抛物线的对称轴为直线x=2或x=-2,

  当对称轴为直线x=2时,

  设所求的抛物线解析式为y=a(x-2)2+k,又∵过A(1,-1),B(-1,1),

  ∴ 解方程组得

  ∴ 抛物线的解析式为y=(x-2)2-

  即 y=x2-x-.

  当对称轴为直线x=-2时,设所求抛物线解析式为y=a(x+2)2+k,

  则有 解方程组得,

  ∴ 抛物线解析式为y=-(x+2)2+

  y=-x2-x+.

  ∴所求抛物线解析式为:y=x2-x-或y=-x2-x+。

  说明:在求直线和双曲线的交点时,需列出方程组,通过解方程组求出x, y值,双曲线的解析式为分式方程,所以所求x, y值需检验。抛物线顶点到y轴距离为2,所以对称轴可在y轴左侧或右侧,所以要分类讨论,求出抛物线的两个解析式。

  例3、已知∠MAN=30°,在AM上有一动点B,作BC⊥AN于C,设BC的长度为x,△ABC的面积为y,试求y与x之间的函数关系式。

  分析:求两个变量y与x之间的函数关系式,就是想办法用x表示y,,BC=x,则想办法先用含x的代数式表示AC。

  解:如图

  在Rt△ABC中,

  ∵∠A=30°,∠BCA=90° BC=x,

  ∴AC=BC=x

  ∴

  说明:在含有30°、45°、60°的直角三角形中,应注意利用边之间的特殊倍数关系(如AC=BC)。

  例4、如图,锐角三角形ABC的边长BC=6,面积为12,P在AB上,Q在AC上,且PQ∥BC,正方形PQRS的边长为x,正方形PQRS与△ABC的公共部分的面积为y。
  (1)当SR恰落在BC上时,求x,
  (2)当SR在△ABC外部时,求y与x间的函数关系式;
  (3)求y的最大值。

  略解:(1)由已知,△ABC的高AD=4。

  ∵△APQ∽△ABC,(如图一)

  设AD与PQ交于点E ∴

  ∴

  ∴

  (2)当SR在△ABC的外部时, 同样有,

  则,即AE=

  ∴y=ED·PQ=x(4-)=-2+4x()

  (3)∵a=-<0,y=-其中,

  ∴当x=3时,y取得最大值6.

  说明:此例将线段PQ的长设为x,正方形PQRS与△ABC的公共部分的面积设为y,寻找它们之间的函数关系.注意自变量的取值范围;在y取最大值时,要注意顶点(3,6)的横坐标是否在取值范围内.

  例5.( 潍坊市中考题)某公园草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图一)作成的立柱。为了计算所需不锈钢管立柱的总长度,设计人员利用图二所示的坐标系进行计算。
  (1)求该抛物线的解析式;   (2)计算所需不锈钢管立柱的总长度。

  

  分析:图中给出了一些数量,并已经过护栏中心建立了平面直角坐标系, 所以求二次函数的解析式关键是找到一些条件建立方程组。因为对称轴是 y轴,所以b=0,可以设二次函数为y=ax2+c.

  解:(1)在如图所示坐标中,设函数解析式为y=ax2+c,B点坐标为(0,0.5),C点坐标为(1,0)。

  分别代入y=ax2+c得:

  ,解得

  抛物线的解析式为:y=-0.5x2+0.5

  (2)分别过AC的五等分点,C1,C2,C3,C4,作x轴的垂线,交抛物线于B1,B2,B3,B4,则C1B1,C2B2,C3B3,C4B4的长就是一段护栏内的四条立柱的长,点C3,C4的坐标为(0.2,0)、(0.6,0),则B3,B4点的横坐标分别为x3=0.2,x4=0.6.
  将x3=0.2和x4=0.6分别代入

  y=-0.5x2+0.5得y3=0.48,y4=0.32

  由对称性得知,B1,B2点的纵坐标:y1=0.32,y2=0.48

  四条立柱的长为:C1B1=C4B4=0.32(m)

  C2B2=C3B3=0.48(m)

  所需不锈钢立柱的总长为

  (0.32+0.48)×2×50=80(m)。

  答:所需不锈钢立柱的总长为80m。
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-06-09
你连分都不赏…还问个这么含糊的问题…

二次函数知识点总结(实用3篇)
二次函数知识点总结(1)定义与定义表达式:二次函数由自变量x和因变量y之间的关系y=ax^2+bx+c定义(a,b,c为常数,a≠0),其中a决定函数的开口方向,a>0时开口向上,a<0时开口向下,|a|可以决定开口大小,|a|越大开口越小,|a|越小开口就越大。二次函数表达式的右边通常为二次三项式。...

二次函数知识点总结
9. 常见的二次函数:y = x^2(抛物线的最简单形式);y = ax^2 + bx + c(一般的二次函数);y = a(x-h)^2 + k(平移后的二次函数)。总结:二次函数是一种重要的函数类型,在数学和物理问题中广泛应用。熟练掌握二次函数的图像特征、根的性质、平移变换等知识点,有助于理解和解决...

二次函数的知识点归纳总结是什么?
二次函数的知识点归纳总结:1. 二次函数的定义:二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。2. 图像与性质:- 当a>0时,二次函数的图像开口向上,最低点为顶点,有最小值。- 当a<0时,二次函数的图像开口向下,最高点为顶点,有最大值。- 一次项系数b影响对称轴...

二次函数知识点总结
2. 二次函数的图像:二次函数的图像是一个开口向上或向下的抛物线。开口方向由\\(a\\)的正负决定,当\\(a > 0\\)时,抛物线开口向上;当\\(a < 0\\)时,抛物线开口向下。3. 顶点坐标:二次函数的图像有一个顶点,其坐标为\\((-b\/2a, c - b^2\/4a)\\)。这个点是抛物线的最高点或最低点,取...

[急]初中数学二次函数知识点有哪些
知识点1:二次函数的定义 一般地,如果,那么叫做的二次函数.[注意]⑴二次函数中,x,y都是变量,是常数,自变量x的取值范围是全体实数,b,c可以是任意实数,但是不为0的实数;⑵若,则变成,当时,是一次函数;当时,则为常数函数;⑶判断一个函数是否是二次函数必须满足三个条件:①函数关系式...

急求:九年级数学二次函数知识点归纳、、
二次函数知识点总结一、定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a≠0),则称y为x的二次函数。二、二次函数的三种表达式 一般式:y=ax2+bx+c(a≠0)顶点式:y=a(x-h) 2+k(a≠0),此时抛物线的顶点坐标为P(h,k)交点式:y=a(x-x1)(x-x...

二次函数知识点
二次函数知识点 一、定义 二次函数是一种具有特定形式的函数,其一般形式为f=ax²+bx+c,其中a、b、c为实数且a不等于0。二、基本性质 1. 二次函数的图像是一个抛物线。根据a的值为正还是负,抛物线开口向上或向下。2. 二次函数具有对称轴。对称轴的方程为x=-b\/2a。3. 二次函数在给定...

初三二次函数重点知识点总结
二次函数是初中数学中的重要内容,以下是对初三二次函数重点知识点的总结。1. 二次函数的解析式形式 - 一般式:y = ax^2 + bx + c (a ≠ 0)- 顶点式:y = a(x - h)^2 + k (a, h, k为常数,a ≠ 0)- 两根式:y = a(x - x1)(x - x2),其中x1, x2是抛物线与x轴...

二次函数的初三数学知识点归纳
1.二次函数的一般形式:y=ax2+bx+c.(a0)2.关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距,即二次函数图象必过(0,c)点.3. y=ax20)的特性:当y=ax2+bx...

二次函数知识点总结
当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax?;+bx+c=0 此时,函数图象与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 二次函数知识点总结相关 文章 : ★ 初中数学二次函数知识点总结 ★ 初中数学一次方程、二次函数与不等式知识汇总 ★ 高考数学函数知识点...

相似回答