一、定义不同
1、极值点:若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
2、驻点:函数的一阶导数为0地点(驻点也称为稳定点,临界点)。对于多元函数,驻点是所有一阶偏导数都为零的点。
3、拐点:又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。
二、性质不同
1、在驻点处的单调性可能改变,在拐点处凹凸性可能改变。
2、拐点:使函数凹凸性改变的点。
3、驻点:一阶导数为零。
三、特征不同
1、极值点不一定是驻点。如y=|x|,在x=0点处不可导,故不是驻点,但是极(小)值点。
2、驻点也不一定是极值点。如y=x³,在x=0处导数为0,是驻点,但没有极值,故不是极值点。
3、该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
扩展资料:
1、零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点
2、驻点和极值点:可导函数f(x)的极值点必定是它的驻点,但是反过来,函数的驻点却不一定是极值点。例如上面举例的y=x3,x=0是函数f(x)的驻点,但它不是极值点。此外,函数在它的一阶导数不存在时,也可能取得极值,例如y=|x|,在x=0处导数不存在,但极值点是x=0。
3、驻点和极值点与函数的一阶导数有关,拐点与函数的二阶导数和三阶导数有关。
参考资料:百度百科-极值点
参考资料:百度百科-驻点
参考资料:百度百科-拐点
什么是拐点,极值点,驻点?
二、性质不同 1、在驻点处的单调性可能改变,在拐点处凹凸性可能改变。2、拐点:使函数凹凸性改变的点。3、驻点:一阶导数为零。三、特征不同 1、极值点不一定是驻点。如y=|x|,在x=0点处不可导,故不是驻点,但是极(小)值点。2、驻点也不一定是极值点。如y=x³,在x=0处导数为0...
极值点、驻点、拐点的区别
拐点和驻点的区别在于,拐点的二阶导数为零,且三阶导数不为零。驻点则是一阶导数为零。需要注意的是,二阶导数为零的点不一定是驻点,因为一阶导数可能不为零;同样,一阶导数为零的点也不一定是驻点,因为二阶导数可能不为零。驻点与极值点之间的关系更为紧密。在可导函数f(x)中,极值点必定是...
什么是拐点?什么是零点和极值点?
零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点。拐点:二阶导数为零,且三阶导不为零;驻点:一阶导数为零或不存在。极值点:若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。拐点是...
【高数辨析】极值点、驻点、拐点
驻点:一阶函数可导的点。极值点:局部最大值或最小值的点。极值点的判断方式:满足公式 [公式] 或 [公式] 或 [公式] 或 [公式]。拐点:函数凹凸性改变的点。一阶可导时,“驻点”包括极值点、拐点,也可能存在其他情况。非驻点的极值点例子:公式 [公式] ,在驻点 [公式] 处不是极值点。非...
如何理解极值点、驻点、拐点的区别和联系?
2.区别和联系 ① 零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点(x0,f(x0))② 驻点和极值点:可导函数f(x)的极值点必定是它的驻点,但是反过来,函数的驻点却不一定是极值点。例如上面举例的y=x3,x=0是函数f(x)的驻点,但它不是...
极值点、驻点、拐点的区别
极值点、驻点、拐点是函数在不同情境下的特殊点,三者有着明确的区别。极值点指的是函数在整个定义域上最大或最小的点,即函数值达到最大或最小的那些点。这些点是函数的局部或全局的最优解。在极值点处,函数的导数等于零。但并非所有导数为零的点都是极值点,还需要考虑函数在该点的一阶导数的...
什么叫驻点,极值点,拐点,它们的区别在哪?
驻点和拐点的区别 驻点和拐点的区别在驻点处的单调性可能改变,在拐点处单调性也可能发生改变,但凹凸性肯定改变;极值点不一定是驻点,驻点不一定是极值点。因为取极值不需要可导,驻点必须可导。对于可导函数,极值点必定是驻点。可导函数f(x)的极值点必定是它的驻点,但是反过来,函数的驻点却不一定是...
高数里的驻点极值点,拐点的区别,怎么计算
一、位置不同:驻点极值点是x轴上的点,拐点是曲线上的点。驻点及一阶导不存在的点有可能是极值点。二阶导为0的点及二阶导不存在的点有可能是拐点。二、作用不同:拐点可能是二阶导数为0或二阶导数不存在的点。求出所有二阶导数为0或不存在点,再进一步分析。极值点可能是一阶导数为0的点,...
极值点、拐点、驻点的表示方法的区别?
然而,驻点不一定是极值点,因为导数改变符号可能是由于函数在该点改变方向,但又没有达到最大或最小值。比如,函数y=x^3在x=0时导数为0,但x=0不是极值点,因为它是一个拐点。拐点则是指函数的二阶导数等于零且三阶导数不等于零的点。拐点表示函数的曲率在该点发生改变,从凹形变为凸形或反之...
拐点 驻点 极值点的区别,尤其分不清拐点和驻点,觉得它们是一个东西啊...
定义不同:拐点:又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点就是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。驻点:函数的一阶导数为0地点(驻点也称为稳定点,临界点)。对于多元函数,驻点是所有一阶偏导数都为零的点。极值点:若f(a)是函数的极大值或极小值,则...