如何求矩阵的秩

如题所述

矩阵的秩计算公式:

A=(aij)m×n

按照初等行变换原则把原来的矩阵变换为阶梯型矩阵,总行数减去全部为零的行数即非零的行数就是矩阵的秩了。

用初等行变换化成梯矩阵,梯矩阵中非零行数就是矩阵的秩。

可以同时用初等列变换,但行变换足已,有时可能用到一个结论:若A中有非零的r阶子式, 则 r(A)>=r;若A的所有r+1阶子式(若存在)都是0,则r(A)<=r.逆命题也成立。

扩展资料

矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

参考资料:百度百科-矩阵的秩

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2019-10-04

引理设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

定理矩阵的行秩,列秩,秩都相等。

定理初等变换不改变矩阵的秩

定理矩阵的乘积的秩Rab<=min{Ra,Rb};

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

扩展资料

矩阵的秩是反映矩阵固有特性的一个重要概念。

设A是一组向量,定义A的最大无关组中向量的个数为A的秩。

定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。

例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。

定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A

的秩,记作rA,或rankA或R(A)。

特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得:

若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。

由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)&sup1; 0;不满秩矩阵就是奇异矩阵,det(A)=0。

由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。

例1. 计算下面矩阵的秩,

而A的所有的三阶子式,或有一行为零;或有两行成比例,因而所

有的三阶子式全为零,所以rA=2。

参考资料:矩阵的秩的百度百科



本回答被网友采纳
第2个回答  推荐于2019-08-15

概念来说,用初等行变换化成梯矩阵, 梯矩阵中非零行数就是矩阵的秩.可以同时用初等列变换, 但行变换足已.更具体来的说,另任意一个r阶子式不是0,r+1阶子式是0,就把r叫做这个矩阵的秩。比如一个3*3矩阵,你化成行最简发现最后一行都是0,那秩就是2,如果化完都不是0,秩就是3,如果有两行是0,那秩就是1

有时可能用到一个结论:
若A中有非零的r阶子式, 则 r(A)>=r;
若A的所有r+1阶子式(若存在)都是0, 则r(A)<=r.
逆命题也成立.

本回答被网友采纳
第3个回答  推荐于2017-11-18
按照初等行变换原则把原来的矩阵变换为阶梯型矩阵,总行数减去全部为零的行数即非零的行数就是矩阵的秩了!!!本回答被提问者采纳
第4个回答  2012-06-27
用初等行变换化成梯矩阵,梯矩阵中非零行数就是矩阵的秩。
可以同时用初等列变换,但行变换足已,有时可能用到一个结论:若A中有非零的r阶子式, 则 r(A)>=r;若A的所有r+1阶子式(若存在)都是0,则r(A)<=r.逆命题也成立。追问

能不能举个例子 我是一点线性代数都没学过 现在在计量中用到这个知识点 不懂的怎么算

追答

如:
1 2 -1 2 1
2 4 1 -2 3
3 6 2 -6 5

r3-r1-r2,
r2-2r1 得:
1 2 -1 2 1
0 0 3 -6 1
0 0 2 -6 1

r2-r3 得:
1 2 -1 2 1
0 0 1 0 0
0 0 2 -6 1

r3-2r2 得:
1 2 -1 2 1
0 0 1 0 0
0 0 0 -6 1

所以 r(A) = 3。

阶梯矩阵

看看图片:http://hiphotos.baidu.com/lry31383/pic/item/2350498960e38b2a9e2fb484.jpg

矩阵的秩有哪几种求法?
求矩阵的秩的几种方法:1、通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。2、通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。...

求矩阵的秩的三种方法
1、求秩有三种方法:(1)你给的例子 。用初等变换秩不变 然后讨论未知数情况;比较简单。(2)特殊行列式:用加边法、累加写出结果 ,用行列式值是否等于零与满秩的关系。(3)实对称针用多角化再判断。2、矩阵的运算:矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。被称为“矩阵加法”...

矩阵的秩怎样求最简单?
求矩阵的秩最简单方法介绍如下:一般有以下几种方法:1、计算A^2,A^3 找规律,然后用归纳法证明。2、若r(A)=1,则A=αβ^T,A^n=(β^Tα)^(n-1)A 注:β^Tα =α^Tβ = tr(αβ^T)3、分拆法:A=B+C,BC=CB,用二项式公式展开。适用于 B^n 易计算,C的低次幂为零:C^...

如何求矩阵的秩
求矩阵的秩可以通过以下方法:1. 对矩阵进行初等行变换,将其化为阶梯型矩阵。2. 查找阶梯型矩阵的非零行数,这个数就是原矩阵的秩。矩阵的秩是矩阵的一个重要属性,它代表了矩阵的行列之间的关联性。求矩阵的秩,一般可以通过以下步骤进行:1. 将矩阵化为阶梯型矩阵 首先,对给定的矩阵进行初等行...

如何求矩阵的秩
求矩阵的秩可以通过以下步骤实现:1. 将矩阵化为行阶梯矩阵。2. 矩阵的秩等于行阶梯矩阵中非零行的数量。化为行阶梯矩阵:矩阵的秩表示其行或列的线性独立性。为了求矩阵的秩,首先需要将其化为行阶梯矩阵。行阶梯矩阵是指矩阵中每一行的第一个非零元素所在的列都比上一行的同一元素所在的列靠右。

如何求矩阵的秩?秩的八个公式是什么?
6、若矩阵A可由r个列向量线性表示,则rank(A)≤r如果矩阵A可以由r个列向量线性表示,那么它的秩rank(A)小于等于r。7、设4为mxn型矩阵,B为nxl型矩阵,若4B=0,则(4)+r(B)Sn。这一个公式是最常用的公式之一,关于这条公式也有一点推论需要掌握。8、矩阵的秩等于非零特征值个数,对于一个...

在线性代数中如何求秩
首先,初等行变换法是最常用的方法之一。通过这一方法,可以将矩阵转化为行阶梯形。在行阶梯形中,非零行的数量即为原矩阵的秩。其次,高斯消元法同样有效。这种方法通过行变换将增广矩阵化为行最简形矩阵,观察非零行的数量即可得出矩阵的秩。此外,利用矩阵的性质也是一种求秩的方式。例如,如果矩阵...

矩阵的秩是怎么求的
求矩阵秩的方法为使用初等行变换法。求矩阵的秩可以通过初等行变换将矩阵化为阶梯型矩阵,然后统计阶梯型矩阵中的非零行数。具体步骤如下:首先将给定矩阵化为阶梯型矩阵。这需要使用初等行变换,包括:1、交换两行。2、某一行乘以一个非零常数。3、某一行加上(或减去)另一行的k倍。在进行初等行...

矩阵的秩怎么求?
1.求向量组的秩的方法:将向量组按列向量构造矩阵(a1,...,as)对此矩阵用初等行变换列变换也可用化为梯矩阵、非零行数即向量组的秩。2.求矩阵的秩:对矩阵实施初等行变换化为梯矩阵、非零行数即矩阵的秩。3.二次型的秩即二次型的矩阵的秩:秩是线性代数术语。在线性代数中,一个矩阵的秩是其...

什么是矩阵的秩?
二、矩阵的秩 对于一个m行n列的矩阵A,它的秩记为rank(A),可以通过以下步骤来计算:将矩阵A进行初等变换,将其化为行阶梯矩阵。计算行阶梯矩阵中非零行的个数,所得到的数就是矩阵A的秩。例如,对于下面这个3行4列的矩阵A:1 2 3 4 5 6 7 8 9 10 11 12 首先将其化为行阶梯矩阵:1 ...

相似回答