ç°ä»£æ°å¦æ¹æ³æ¦è®ºè®ºæ
ç»æµæ°å¦é®é¢ä¾è¯´èª1993å¹´5æé«èå½é¢ç»æ请注ææ°å¦çåºç¨ä»¥åï¼1995å¹´å
¨å½é«èæçç§è¯é¢ä¸ååºç°äºä¸éå
³äºæ·¡æ°´é±¼å
»æ®çå¸åºé¢æµçåºç¨é¢ï¼è¿æ¯ä¸éæ°å¦åºç¨æ¹é¢ç好é¢ï¼ç±äºå®æ¯ç»æµæ°å¦æ¹é¢çé®é¢ï¼ä»èå¨å»ºç«ç¤¾ä¼ä¸»ä¹å¸åºç»æµæ°ä½å¶çä»å¤©ï¼æ ¼å¤å°å¼èµ·å¤§å®¶ç注ç®ã
ããæè°ç»æµæ°å¦é®é¢ï¼å°±æ¯ç¨æ°å¦æ¹æ³æ¥ç 究ç»æµå¦çä¸äºé®é¢ï¼å¦ç»æµå¢é¿çã人å£å¢é¿ççæ¹é¢çå½æ°ç»æµé®é¢ï¼é¶è¡ä¸å¡é®é¢ï¼è¯å¸å¸åºé®é¢ï¼ä¿é©è®¡ç®é®é¢ï¼æ¶è´¹ä¸å¸åºé¢æµé®é¢ï¼æå
¥äº§åºé®é¢ï¼ççãä¸è¿°é®é¢ä¸ï¼è½ç¨ä¸å¦çå¯ä»¥æ¥åçåçæ°å¦æ¹æ³è§£å³çä¸äºåºç¡é®é¢é½åºå½å¼èµ·æ们çéè§ã
ããä¸é¢ä¸¾å 个ä¾åã
ããä¾1ï¼æååçå¸åºéæ±éPï¼ä¸ä»¶ï¼?ãå¸åºä¾åºéQä¸å¸åºä»·æ ¼xï¼å
ï¼ä»¶ï¼åå«è¿ä¼¼å°æ»¡è¶³ä¸åå
³ç³»ï¼ Pï¼ï¼xï¼70ï¼ Qï¼2xï¼20å½Pï¼Qæ¶çå¸åºä»·æ ¼ç§°ä¸ºå¸åºå¹³è¡¡ä»·æ ¼ï¼æ¤æ¶çéæ±é称为平衡éæ±éã
ããï¼1ï¼æ±å¹³è¡¡ä»·æ ¼å平衡éæ±éï¼
ããï¼2ï¼è¥æ¯ä»¶ååå¾ç¨3å
ï¼æ±æ°çå¹³è¡¡ä»·æ ¼ï¼
ããï¼3ï¼è¥è¦ä½¿å¹³è¡¡éæ±éå¢å 4ä¸ä»¶ï¼æ¿åºå¯¹æ¯ä»¶åååºç»äºå¤å°å
补贴ï¼
解ï¼ï¼1ï¼æ±å¾å¹³è¡¡ä»·æ ¼ä¸º30å
/件ï¼å¹³è¡¡éæ±é为40ä¸ä»¶ã
ããï¼2ï¼è®¾æ°çå¸åºå¹³è¡¡ä»·æ ¼ä¸ºxå
/件ï¼æ¤å³ä¸ºæ¶è´¹è
æ¯ä»ä»·æ ¼ï¼èæä¾è
å¾å°çä»·æ ¼å为ï¼xä¸3ï¼å
/件ï¼ä¾é¢æå¾ï¼xï¼70ï¼2ï¼xï¼3ï¼ï¼20ï¼ä»è解å¾æ°çå¹³è¡¡ä»·æ ¼ä¸º32å
/件ã
ããï¼3ï¼è®¾æ¿åºç»äºtå
/件补贴ï¼æ¤æ¶çå¸åºå¹³è¡¡ä»·æ ¼äº¦å³æ¶è´¹è
æ¯ä»ä»·æ ¼ä¸ºxå
/件ï¼åæä¾è
æ¶å°çä»·æ ¼ä¸ºï¼xï¼tï¼å
/件ï¼ä¾é¢æå¾æ¹ç¨ç»ï¼xï¼70ï¼44
2ï¼xï¼tï¼ï¼20ï¼44ã解ä¹å¾ xï¼26 tï¼6
ããä¾2ï¼æ产åæ¥äº§é为20å°ï¼æ¯å°ä»·90å
ï¼è¥æ¥äº§éæ¯å¢å 1å°ï¼ååä»·å°±è¦éä½3å
ï¼é®å¦ä½è®¾è®¡ç产ï¼ä½¿æ¥æ»æ¶å
¥æ大ï¼
解ï¼è®¾æ¯æ¥å¤ç产xå°ï¼æ»æ¶å
¥ä¸ºyå
ï¼ä¾é¢æå¾ yï¼ï¼90ï¼3xï¼ï¼20ï¼xï¼æå¾å½æ¥äº§é为25å°æ¶ï¼æ»æ¶å
¥æ大ã
ããä¾3ï¼æåä»å¹´å贷款100ä¸å
ï¼å¤å©è®¡æ¯ï¼å¹´å©ç为10ï¼
ï¼å³æ¬å¹´çå©æ¯è®¡å
¥æ¬¡å¹´çæ¬éçæ¯ï¼ï¼è®¡ç®ä»ä»å¹´æ«å¼å§æ¯å¹´å¿è¿åºå®çéé¢ï¼æ°å¨ç¬¬12å¹´æ«è¿æ¸
ï¼é®æ¯å¹´å¿è¿çéé¢æ¯å¤å°ä¸å
ï¼
解ï¼è®¾æ¯å¹´å¿è¿çéé¢ä¸ºXä¸å
ï¼ä¾é¢æå¾ï¼ xï¼xï¼1ï¼10ï¼
ï¼ï¼xï¼1ï¼10ï¼
ï¼2ï¼â¦ï¼xï¼1ï¼10ï¼
ï¼11ï¼100ï¼1ï¼10ï¼
ï¼12解ä¹å¾xï¼15ï¼ä¸å
ï¼
09-12-18 | æ·»å è¯è®º | æèµ
0
hellomydram11
ä¾å¦ï¼
æéçæ±æ³
1. ç´æ¥ä»£å
¥æ³
éç¨äºåå,åæ¯çæéä¸åæ¶ä¸ºé¶æä¸åæ¶ä¸º
ä¾ 1. æ± .
åæ ç±äº ,
æ以éç¨ç´æ¥ä»£å
¥æ³.
解 åå¼=
2.å©ç¨æéçååè¿ç®æ³åæ¥æ±æé
为åè¿°æ¹ä¾¿,æ们æèªåéçæ个ååè¿ç¨ç¥å»ä¸å,ç¨è®°å·è¡¨ç¤ºå¨æ个æéè¿ç¨ä¸çæé,å æ¤æéçååè¿ç®æ³åå¯ç¡®åå°åè¿°å¦ä¸:
å®ç å¨åä¸ååè¿ç¨ä¸,设é½åå¨,å
(1)
(2)
(3)å½åæ¯æ¶,æ
æ»ç说æ¥,å°±æ¯å½æ°çå,å·®,积,åçæéçäºå½æ°æéçå,å·®,积,å.
æ±.
解
3.æ ç©·å°éååºæ³
éç¨äºåå,åæ¯åæ¶è¶äº ,å³ åæªå®å¼
ä¾3.
åæ æç»å½æ°ä¸,åå,åæ¯å½ æ¶çæéé½ä¸åå¨,æ以ä¸è½ç´æ¥åºç¨æ³å.注æå°å½ æ¶,åå,åæ¯åæ¶è¶äº ,é¦å
å°å½æ°è¿è¡åçåå½¢,å³åå,åæ¯åé¤ çæé«æ¬¡å¹,å¯å°æ ç©·å°éååºæ¥,ç¶ååæ ¹æ®è¿ç®æ³åå³å¯æ±åºæé.
为ä»ä¹æç»å½æ°ä¸,å½ æ¶,åå,åæ¯åæ¶è¶äº å¢ ä»¥å½ è¯´æ:å 为 ,ä½æ¯ è¶äº çé度è¦æ¯ è¶äº çé度快,æ以 .ä¸è¦è®¤ä¸º ä»æ¯ (å 为 ææ£è´ä¹å).
解 åå¼ (åå,åæ¯åé¤ )
(è¿ç®æ³å)
(å½ æ¶, é½è¶äº .æ 穷大çåæ°æ¯æ ç©·å°.)
4. æ¶å»é¶å åæ³
éç¨äºåå,åæ¯çæéåæ¶ä¸º0,å³ åæªå®å¼
ä¾4.
åæ æç»ä¸¤ä¸ªå½æ°ä¸,åå,åæ¯çæéåæ¯0,ä¸è½ç´æ¥ä½¿ç¨æ³åå,æ
éç¨æ¶å»é¶å åæ³.
解 åå¼= (å å¼å解)
= (约åæ¶å»é¶å å )
= (åºç¨æ³å)
=
5. å©ç¨æ ç©·å°éçæ§è´¨
ä¾5. æ±æé
åæ å 为 ä¸åå¨,ä¸è½ç´æ¥ä½¿ç¨è¿ç®æ³å, æ
å¿
é¡»å
å°å½æ°è¿è¡æçåå½¢.
解 åå¼= (æçåå½¢)
å 为 å½ æ¶, , å³ æ¯å½ æ¶çæ ç©·å°,è â¤1, å³ æ¯æçå½æ°,ç±æ ç©·å°çæ§è´¨:æçå½æ°ä¹æ ç©·å°ä»æ¯æ ç©·å°,
å¾ =0.
6. å©ç¨æ项æ³æå·§
ä¾6:
åæ:ç±äº=
åå¼=
7. åéæ¿æ¢
ä¾7 æ±æé .
åæ å½ æ¶,åå,åæ¯é½è¶äº ,ä¸è½ç´æ¥åºç¨æ³å,注æå° ,æ
å¯ä½åéæ¿æ¢.
解 åå¼ =
= (令 ,å¼è¿æ°çåé,å°åæ¥çå
³äº çæé转å为 çæé.)
= . ( å,æé«æ¬¡å¹å¨åæ¯ä¸)
8. å段å½æ°çæé
ä¾8 设 讨论 å¨ç¹ å¤çæéæ¯å¦åå¨.
åæ æç»å½æ°æ¯å段å½æ°, æ¯å段ç¹, è¦ç¥ æ¯å¦åå¨,å¿
é¡»ä»æéåå¨çå
è¦æ¡ä»¶å
¥æ.
解 å 为
æ以 ä¸åå¨.
注1 å 为 ä» ç左边è¶äº ,å ,æ
.
注2 å 为 ä» çå³è¾¹è¶äº ,å ,æ
.
å®å¿ç½æ ¡ ä¿æ°
1ãå©ç¨å®ä¹æ±æéã
2ãå©ç¨æ¯è¥¿ååæ¥æ±ã æ¯è¥¿ååï¼è¦ä½¿{xn**ææéçå
è¦æ¡ä»¶ä½¿ä»»ç»Îµ>0,åå¨èªç¶æ°Nï¼ä½¿å¾å½n>Næ¶ï¼å¯¹äº ä»»æçèªç¶æ°mæ|xn-xm|<ε.
3ãå©ç¨æéçè¿ç®æ§è´¨åå·²ç¥çæéæ¥æ±ã å¦ï¼lim(x+x^0.5)^0.5/(x+1)^0.5 =lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5 =1.
4ãå©ç¨ä¸çå¼å³ï¼å¤¹æ¤å®çã
5ãå©ç¨åéæ¿æ¢æ±æéã ä¾å¦lim (x^1/m-1)/(x^1/n-1) å¯ä»¤x=y^mn å¾ï¼ï¼n/m.
6ãå©ç¨ä¸¤ä¸ªéè¦æéæ¥æ±æéã ï¼1ï¼lim sinx/x=1 çç->0 (2)lim (1+1/n)^n=e çç->â 7ãå©ç¨åè°æçå¿
ææéæ¥æ±ã
8ãå©ç¨å½æ°è¿ç»å¾æ§è´¨æ±æéã
9ãç¨æ´å¿
è¾¾æ³åæ±ï¼è¿æ¯ç¨å¾æå¤çã
10ãç¨æ³°åå
¬å¼æ¥æ±ï¼è¿ç¨å¾ä¹å¾ç»å¸¸ã
ãæä¸å®æ¬¡åºæåçä¸åæ°ç§°ä¸ºæ°åï¼sequence of numberï¼ãæ°åä¸çæ¯ä¸ä¸ªæ°é½å«åè¿ä¸ªæ°åç项ãæå¨ç¬¬ä¸ä½çæ°å称为è¿ä¸ªæ°åç第1项ï¼é常ä¹å«åé¦é¡¹ï¼ï¼æå¨ç¬¬äºä½çæ°ç§°ä¸ºè¿ä¸ªæ°åç第2项â¦â¦æå¨ç¬¬nä½çæ°ç§°ä¸ºè¿ä¸ªæ°åç第n项ãæ以ï¼æ°åçä¸è¬å½¢å¼å¯ä»¥åæ
ããa1ï¼a2ï¼a3ï¼â¦ï¼anï¼â¦
ããç®è®°ä¸ºï½anï½ï¼é¡¹æ°æéçæ°å为âæç©·æ°åâï¼finite sequenceï¼ï¼é¡¹æ°æ éçæ°å为âæ ç©·æ°åâï¼infinite sequenceï¼ã
ããä»ç¬¬2项起ï¼æ¯ä¸é¡¹é½å¤§äºå®çåä¸é¡¹çæ°åå«åéå¢æ°åï¼
ããä»ç¬¬2项起ï¼æ¯ä¸é¡¹é½å°äºå®çåä¸é¡¹çæ°åå«åéåæ°åï¼
ããä»ç¬¬2项起ï¼æäºé¡¹å¤§äºå®çåä¸é¡¹ï¼æäºé¡¹å°äºå®çåä¸é¡¹çæ°åå«åæå¨æ°åï¼
ããå项åå¨ææ§ååçæ°åå«åå¨ææ°åï¼å¦ä¸è§å½æ°ï¼ï¼
ããå项ç¸ççæ°åå«å常æ°åã
ããé项å
¬å¼ï¼æ°åç第N项anä¸é¡¹çåºæ°nä¹é´çå
³ç³»å¯ä»¥ç¨ä¸ä¸ªå
¬å¼è¡¨ç¤ºï¼è¿ä¸ªå
¬å¼å°±å«åè¿ä¸ªæ°åçé项å
¬å¼ã
ããæ°åä¸æ°çæ»æ°ä¸ºæ°åç项æ°ãç¹å«å°ï¼æ°åå¯ä»¥çæ以æ£æ´æ°éN*ï¼æå®çæéåéï½1ï¼2ï¼â¦ï¼nï½ï¼ä¸ºå®ä¹åçå½æ°an=f(n)ã
ããå¦æå¯ä»¥ç¨ä¸ä¸ªå
¬å¼æ¥è¡¨ç¤º,åå®çé项å
¬å¼æ¯a(n)=f(n).
[ç¼è¾æ¬æ®µ]表示æ¹æ³
ããå¦ææ°åï½anï½ç第n项ä¸åºå·nä¹é´çå
³ç³»å¯ä»¥ç¨ä¸ä¸ªå¼åæ¥è¡¨ç¤ºï¼é£ä¹è¿ä¸ªå
¬å¼å«åè¿ä¸ªæ°åçé项å
¬å¼ãå¦an=(-1)^(n+1)+1
ããå¦ææ°åï½anï½ç第n项ä¸å®åä¸é¡¹æå 项çå
³ç³»å¯ä»¥ç¨ä¸ä¸ªå¼åæ¥è¡¨ç¤ºï¼é£ä¹è¿ä¸ªå
¬å¼å«åè¿ä¸ªæ°åçéæ¨å
¬å¼ãå¦an=2a(n-1)+1 (n>1)
[ç¼è¾æ¬æ®µ]çå·®æ°å
ãããå®ä¹ã
ããä¸è¬å°ï¼å¦æä¸ä¸ªæ°åä»ç¬¬2项起ï¼æ¯ä¸é¡¹ä¸å®çåä¸é¡¹çå·®çäºåä¸ä¸ªå¸¸æ°ï¼è¿ä¸ªæ°åå°±å«åçå·®æ°åï¼arithmetic sequenceï¼ï¼è¿ä¸ªå¸¸æ°å«åçå·®æ°åçå
¬å·®ï¼common differenceï¼ï¼å
¬å·®é常ç¨åæ¯d表示ã
ããã缩åã
ããçå·®æ°åå¯ä»¥ç¼©å为A.P.ï¼Arithmetic Progressionï¼ã
ãããçå·®ä¸é¡¹ã
ããç±ä¸ä¸ªæ°aï¼Aï¼bç»æççå·®æ°åå¯ä»¥å ªç§°æç®åççå·®æ°åãè¿æ¶ï¼Aå«åaä¸bççå·®ä¸é¡¹ï¼arithmetic meanï¼ã
ããæå
³ç³»ï¼Aï¼ï¼aï¼bï¼/2
ãããé项å
¬å¼ã
ããan=a1+(n-1)d
ããan=Sn-S(n-1) (n>=2)
ãããån项åã
ããSn=n(a1+an)/2=n*a1+n(n-1)d/2
ãããæ§è´¨ã
ããä¸ä»»æ两项amï¼ançå
³ç³»ä¸ºï¼
ããan=am+(n-m)d
ããå®å¯ä»¥çä½çå·®æ°å广ä¹çé项å
¬å¼ã
ããä»çå·®æ°åçå®ä¹ãé项å
¬å¼ï¼ån项åå
¬å¼è¿å¯æ¨åºï¼
ããa1+an=a2+an-1=a3+an-2=â¦=ak+an-k+1ï¼kâ{1,2,â¦,n}
ããè¥mï¼nï¼pï¼qâN*ï¼ä¸m+n=p+qï¼åæ
ããam+an=ap+aq
ããSm-1=(2n-1)anï¼S2n+1=(2n+1)an+1
ããSkï¼S2k-Skï¼S3k-S2kï¼â¦ï¼Snk-S(n-1)kâ¦æçå·®æ°åï¼ççã
ããåï¼ï¼é¦é¡¹ï¼æ«é¡¹ï¼Ã项æ°Ã·2
ãã项æ°ï¼ï¼æ«é¡¹-é¦é¡¹ï¼Ã·å
¬å·®ï¼1
ããé¦é¡¹=2å÷项æ°-æ«é¡¹
ããæ«é¡¹=2å÷项æ°-é¦é¡¹
ãã设a1,a2,a3为çå·®æ°åãåa2为çå·®ä¸é¡¹,å2åça2çäºa1+a3ï¼å³2a2=a1+a3ã
ãããåºç¨ã
ããæ¥å¸¸çæ´»ä¸ï¼äººä»¬å¸¸å¸¸ç¨å°çå·®æ°åå¦ï¼å¨ç»åç§äº§åç尺寸åå级å«
ããæ¶ï¼å½å
¶ä¸çæ大尺寸ä¸æå°å°ºå¯¸ç¸å·®ä¸å¤§æ¶ï¼å¸¸æçå·®æ°åè¿è¡å级ã
ããè¥ä¸ºçå·®æ°åï¼ä¸æan=m,am=n.åa(m+n)ï¼0ã
[ç¼è¾æ¬æ®µ]çæ¯æ°å
ãããå®ä¹ã
ããä¸è¬å°ï¼å¦æä¸ä¸ªæ°åä»ç¬¬2项起ï¼æ¯ä¸é¡¹ä¸å®çåä¸é¡¹çæ¯çäºåä¸ä¸ªå¸¸æ°ï¼è¿ä¸ªæ°åå°±å«åçæ¯æ°åï¼geometric sequenceï¼ãè¿ä¸ªå¸¸æ°å«åçæ¯æ°åçå
¬æ¯ï¼common ratioï¼ï¼å
¬æ¯é常ç¨åæ¯q表示ã
ããã缩åã
ããçæ¯æ°åå¯ä»¥ç¼©å为G.P.ï¼Geometric Progressionï¼ã
ãããçæ¯ä¸é¡¹ã
ããå¦æå¨aä¸bä¸é´æå
¥ä¸ä¸ªæ°Gï¼ä½¿aï¼Gï¼bæçæ¯æ°åï¼é£ä¹Gå«åaä¸bççæ¯ä¸é¡¹ã
ããæå
³ç³»ï¼G^2ï¼abï¼Gï¼Â±(ab)^(1/2)
ãã注ï¼ä¸¤ä¸ªéé¶åå·çå®æ°ççæ¯ä¸é¡¹æ两个ï¼å®ä»¬äºä¸ºç¸åæ°ï¼æ以G^2=abæ¯a,G,bä¸æ°æçæ¯æ°åçå¿
è¦ä¸å
åæ¡ä»¶ã
ãããé项å
¬å¼ã
ããan=a1q^(n-1)
ããan=Sn-S(n-1) (nâ¥2)
ãããån项åã
ããå½qâ 1æ¶ï¼çæ¯æ°åçån项åçå
¬å¼ä¸º
ããSn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (qâ 1)
ãããæ§è´¨ã
ããä»»æ两项amï¼ançå
³ç³»ä¸ºan=am·q^(n-m)
ããï¼3ï¼ä»çæ¯æ°åçå®ä¹ãé项å
¬å¼ãån项åå
¬å¼å¯ä»¥æ¨åºï¼ a1·an=a2·an-1=a3·an-2=â¦=ak·an-k+1ï¼kâ{1,2,â¦,n}
ããï¼4ï¼çæ¯ä¸é¡¹ï¼aq·ap=ar*2ï¼arå为apï¼aqçæ¯ä¸é¡¹ã
ããè®°Ïn=a1·a2â¦anï¼åæÏ2n-1=(an)2n-1ï¼Ï2n+1=(an+1)2n+1
ããå¦å¤ï¼ä¸ä¸ªå项å为æ£æ°ççæ¯æ°åå项åååºæ°æ°åææä¸ä¸ªçå·®æ°åï¼åä¹ï¼ä»¥ä»»ä¸ä¸ªæ£æ°C为åºï¼ç¨ä¸ä¸ªçå·®æ°åçå项åææ°æé å¹Canï¼åæ¯çæ¯æ°åãå¨è¿ä¸ªæä¹ä¸ï¼æ们说ï¼ä¸ä¸ªæ£é¡¹çæ¯æ°åä¸çå·®æ°åæ¯âåæâçã
ããæ§è´¨ï¼
ããâ è¥ mãnãpãqâN*ï¼ä¸mï¼n=pï¼qï¼åam·an=ap·aqï¼
ããâ¡å¨çæ¯æ°åä¸ï¼ä¾æ¬¡æ¯ k项ä¹åä»æçæ¯æ°å.
ããâGæ¯aãbççæ¯ä¸é¡¹ââG^2=abï¼Gâ 0ï¼â.
ãã(5) çæ¯æ°åån项ä¹åSn=A1(1-q^n)/(1-q)
ããå¨çæ¯æ°åä¸ï¼é¦é¡¹A1ä¸å
¬æ¯qé½ä¸ä¸ºé¶.
ãã注æï¼ä¸è¿°å
¬å¼ä¸A^n表示Açn次æ¹ã
ãããåºç¨ã
ããçæ¯æ°åå¨çæ´»ä¸ä¹æ¯å¸¸å¸¸è¿ç¨çã
ããå¦ï¼é¶è¡æä¸ç§æ¯ä»å©æ¯çæ¹å¼---å¤å©ã
ããå³æåä¸æçå©æ¯èµ«æ¬éä»·å¨ä¸èµ·ç®ä½æ¬éï¼
ããå¨è®¡ç®ä¸ä¸æçå©æ¯ï¼ä¹å°±æ¯äººä»¬é常说çå©æ»å©ã
ããæç
§å¤å©è®¡ç®æ¬å©åçå
¬å¼ï¼æ¬å©å=æ¬é*(1+å©ç)^åæ
ããå¦æä¸ä¸ªæ°åä»ç¬¬2项起ï¼æ¯ä¸é¡¹ä¸å®çåä¸é¡¹çæ¯çäºåä¸ä¸ªå¸¸æ°ï¼è¿ä¸ªæ°åå°±å«åçæ¯æ°åãè¿ä¸ªå¸¸æ°å«åçæ¯æ°åçå
¬æ¯ï¼å
¬æ¯é常ç¨åæ¯q表示(qâ 0)ã
ããï¼1ï¼çæ¯æ°åçé项å
¬å¼æ¯ï¼An=A1*q^ï¼nï¼1ï¼
ããè¥é项å
¬å¼å形为an=a1/q*q^n(nâN*),å½qï¼0æ¶ï¼åå¯æançä½èªåénçå½æ°ï¼ç¹(n,an)æ¯æ²çº¿y=a1/q*q^xä¸çä¸ç¾¤å¤ç«çç¹ã
ããï¼2ï¼æ±åå
¬å¼ï¼Sn=nA1(q=1)
ããSn=A1(1-q^n)/(1-q)
ãã=(a1-a1q^n)/(1-q)
ãã=a1/(1-q)-a1/(1-q)*q^n ( å³A-Aq^n)
ãã(åæï¼qä¸çäº 1)
ããä»»æ两项amï¼ançå
³ç³»ä¸ºan=am·q^(n-m)
ããï¼3ï¼ä»çæ¯æ°åçå®ä¹ãé项å
¬å¼ãån项åå
¬å¼å¯ä»¥æ¨åºï¼ a1·an=a2·an-1=a3·an-2=â¦=ak·an-k+1ï¼kâ{1,2,â¦,n}
ããï¼4ï¼çæ¯ä¸é¡¹ï¼aq·ap=ar^2ï¼arå为apï¼aqçæ¯ä¸é¡¹ã
ããè®°Ïn=a1·a2â¦anï¼åæÏ2n-1=(an)2n-1ï¼Ï2n+1=(an+1)2n+1
ããå¦å¤ï¼ä¸ä¸ªå项å为æ£æ°ççæ¯æ°åå项åååºæ°åææä¸ä¸ªçå·®æ°åï¼åä¹ï¼ä»¥ä»»ä¸ä¸ªæ£æ°C为åºï¼ç¨ä¸ä¸ªçå·®æ°åçå项åææ°æé å¹Canï¼åæ¯çæ¯æ°åãå¨è¿ä¸ªæä¹ä¸ï¼æ们说ï¼ä¸ä¸ªæ£é¡¹çæ¯æ°åä¸çå·®æ°åæ¯âåæâçã
[ç¼è¾æ¬æ®µ]ä¸è¬æ°åçé项æ±æ³
ããä¸è¬æï¼
ããan=Sn-Sn-1 ï¼nâ¥2ï¼
ããç´¯åæ³ï¼an-an-1=... an-1 - an-2=... a2-a1=...å°ä»¥ä¸å项ç¸å å¯å¾anï¼ã
ããéåå
¨ä¹æ³ï¼å¯¹äºåä¸é¡¹ä¸åä¸é¡¹åä¸å«ææªç¥æ°çæ°åï¼ã
ããåå½æ³ï¼å°æ°ååå½¢ï¼ä½¿åæ°åçåæ°æä¸æåä¸å¸¸æ°çåæçå·®æçæ¯æ°åï¼ã
ããç¹å«çï¼
ããå¨çå·®æ°åä¸ï¼æ»æSn S2n-Sn S3n-S2n
ãã2(S2n-Sn)=(S3n-S2n)+Sn
ããå³ä¸è
æ¯çå·®æ°å,åæ ·å¨çæ¯æ°åä¸ãä¸è
æçæ¯æ°å
ããä¸å¨ç¹æ³ï¼å¸¸ç¨äºåå¼çé项éæ¨å
³ç³»ï¼
[ç¼è¾æ¬æ®µ]ç¹æ®æ°åçé项çåæ³
ãã1,2,3,4,5,6,7,8....... ---------an=n
ãã1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n
ãã2ï¼4ï¼6ï¼8ï¼10ï¼12ï¼14.......-------an=2n
ãã1,3,5,7,9,11,13,15.....-------an=2n-1
ãã-1,1,-1,1,-1,1,-1,1......--------an=(-1)^n
ãã1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)
ãã1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2
ãã1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)Ï/2=sinnÏ/2
ãã9,99,999,9999,99999,......... ------an=ï¼10^n)-1
ãã1,11,111,1111,11111.......--------an=[ï¼10^n)-1]/9
ãã1ï¼4ï¼9ï¼16ï¼25ï¼36ï¼49ï¼.......------an=n^2
ãã1,2,4,8,16,32......--------an=2^(n-1)
[ç¼è¾æ¬æ®µ]æ°ååN项åå
¬å¼çæ±æ³
ãã(ä¸)1.çå·®æ°å:
ããé项å
¬å¼an=a1+(n-1)d é¦é¡¹a1,å
¬å·®d, an第n项æ°
ããan=ak+(n-k)d ak为第k项æ°
ããè¥a,A,bææçå·®æ°å å A=(a+b)/2
ãã2.çå·®æ°åån项å:
ãã设çå·®æ°åçån项å为Sn
ããå³ Sn=a1+a2+...+an;
ããé£ä¹ Sn=na1+n(n-1)d/2
ãã=dn^2(å³nç2次æ¹) /2+(a1-d/2)n
ããè¿æ以ä¸çæ±åæ¹æ³: 1,ä¸å®å
¨å½çº³æ³ 2 ç´¯å æ³ 3 ååºç¸å æ³
ãã(äº)1.çæ¯æ°å:
ããé项å
¬å¼ an=a1*q^(n-1)(å³qçn-1次æ¹) a1为é¦é¡¹,an为第n项
ããan=a1*q^(n-1),am=a1*q^(m-1)
ããåan/am=q^(n-m)
ãã(1)an=am*q^(n-m)
ãã(2)a,G,b è¥ææçæ¯ä¸é¡¹,åG^2=ab (a,b,Gä¸çäº0)
ãã(3)è¥m+n=p+q å amÃan=apÃaq
ãã2.çæ¯æ°åån项å
温馨提示:内容为网友见解,仅供参考