网友们帮忙找一下初中几何定理

如题所述

初中几何证明的一般途径
证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、
圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段
相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。 证明两个角相等 1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹
的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。

证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于
第三边。

证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。

证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、
三角形的重心、相似三角形的性质等)。

证明 角的和差倍分
1.与证明线段的和、差、倍、分思路相同。
2.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。

证明线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。

证明两角的不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。

证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。

证明四点共圆
1.对角互补的四边形的顶点共圆。
2.外角等于内对角的四边形内接于圆。
3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。
4.同斜边的直角三角形的顶点共圆。
5.到顶点距离相等的各点共圆
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-11-06
百度知道已经有了,请参见链接。

参考资料:http://zhidao.baidu.com/question/330474883.html

初中几何图形的定理求大神帮助
(2)轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。 15. 等腰三角形中的有关公理、定理: (1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)(3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、...

求初中所有几何证明的条件,定理
同位角相等,两直线平行。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。直角三角形中,斜边上的中线等于斜边的一半。在角平分线上的点到这个角的两边距离相等。及其逆定理。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。一组对边平行且相等、或两组对边分别相等、或...

谁可以给我数学初中高中的所有关于几何的定理
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂...

求初中数学竞赛公式定理(几何方面的)
1、正弦定理:对于△ABC,三边分别为a、b、c,则有:a\/sinA=b\/sinB=c\/sinC=2R (R为其外接圆半径)2、余弦定理:对于△ABC,三边分别为a、b、c,则有:a*2=b*2+c*2-2bccosA b*2=a*2+c*2-2accosB c*2=b*2+a*2-2bacosB 3、面积公式:S=1\/2absinC=1\/2acs...

初中数学几何定理
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和...

网友们帮忙找一下初中几何定理
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。3.延长短线段为其二倍,再证明它与较长的线段相等。4.取长线段的中点,再证其一半等于短线段。5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。证明 ...

初二数学所有几何定理
我把初一的也找到了!希望对你有帮助。 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如...

初中几何都有哪些定理(课本以内的除外)像什么托勒密定理 拿破仑定理 射...
柯西定理,牛顿三角形,牛顿几何定理,海伦定理,斐波那契数列,梅涅劳斯定理,赛瓦定理,斯德瓦特定理,西姆松定理,欧拉定理等。

人教版数学初一初二所有几何概念
新人教版初中数学几何定理汇总 二、基本定理 1. 过两点有且只有一条直线。2. 两点之间线段最短。3. 同角或等角的补角相等。4. 同角或等角的余角相等。5. 过一点有且只有一条直线和已知直线垂直。6. 直线外一点与直线上各点连接的所有线段中,垂线段最短。7. 平行公理:经过直线外一点,有且...

初中数学定理有哪些
- 直线定理:过一点有且只有一条直线和已知直线垂直。- 直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短。2. 三角形内角定理 - 定理:三角形两边的和大于第三边。- 推论:三角形两边的差小于第三边。- 三角形内角和定理:三角形三个内角的和等于180°。3. 几何平行 - 平行定理:...

相似回答