《有理数》总复习(一) 教案
一、内容分析
小结与复习分作两个部分。第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了一些个问题;通过这些问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:
小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。本章的主要内容可以概括为有理数的概念与有理数的运算两部分。因此,本章总复习的二课时这样安排(测验课除外):
第一课时复习有理数的意义及其有关概念;
第二课时复习有理数的运算。
三、教学方法的确定:
回顾有理数这一章涉及的概念,检测学生知识掌握程度,科学地进行小结与归纳。
四、教学安排:
第一课时
一、教学目标:
1.知识与技能:
①理解八个重要概念:有理数、数轴、相反数、绝对值、倒数、科学计数法、近似数、有效数字.
②使学生提高辨别概念能力,能正确地使用这些概念解决问题.
③能正确比较两个有理数的大小.
2.过程与方法
在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。另外,
3.情感态度和价值观
在运用有理数概念的同时,还应注意纠正可能出现的错误认识,使学生在学习中学会发现错误和改正错误。
二、教学重点:
对有理数的八个概念:有理数、数轴、相反数、绝对值、倒数、科学计数法、近似数、有效数字的理解与运用。
三、教学难点:
对绝对值概念的理解与应用。
四、教学过程:
(一)知识梳理与巩固练习:
1、正数与负数:在正数前面加“—”的数叫做负数;(给出负数的概念,然后出一些判断题和应用文字题,让学生了解负数的概念和负数在生产、生活中的应用.)
[基础练习]
1.判断
1)a一定是正数;
2)-a一定是负数;
3)-(-a)一定大于0;
2.加-20%,实际的意思是 .
3.乙大-3表示的意思是 .
2.有理数的分类:(通过下面概括让学生掌握有理数的两种分类方法)
[基础练习]:
1.把下列各数填在相应额大括号内:
1,-0.1,-789,25,0,-20,-3.14,-590,6/7
正整数集 { }; 正有理数集{ };
负有理数集{ };
自然数集{ };正分数集 { };
负分数集{ }.
2. 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 .
3.数轴:规定了原点、正方向和单位长度的直线.
-3 –2 –1 0 1 2 3
1)在数轴上表示的两个数,右边的数总比左边的数大
2)正数都大于0,负数都小于0;正数大于一切负数;
3)所有有理数都可以用数轴上的点表示.
[基础练习]
1.如图所示的图形为四位同学画的数轴,其中正确的是( )
2.比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________. ③有理数中,最大的负整数是__,最小的正整数是__.最大的非正数是__.
3.轴上点A表示-4,如果把原点O向负方向移动1个单位,那么在新数轴上点A表示的数是( )
A.-5, B.-4 C.-3 D.-2
4.相反数:只有符号不同的两个数,其中一个是另一个的相反数. (给出相反数的定义以及要注意的结论.)
1)数a的相反数是-a(a是任意一个有理数);
2)0的相反数是0. 3)若a、b互为相反数,则a+b=0.
[基础练习]
1.-5的相反数是 ;-(-8)的相反数是 ;0的相反数是 ; a的相反数是 ;
2用-a表示的数一定是( )
A .负数 B. 正数
C .正数或负数 D.正数或负数或0
3一个数的相反数是最小的正整数,那么这个数是( )
A .–1 B. 1 C .±1 D. 0
4①互为相反的两个数在数轴上位于原点两旁( )
②只要符号不同,这两个数就是相反数( )
5.倒数:乘积是1的两个数互为倒数.(给出倒数的概念,以及要主要的结论)
1)a的倒数是 (a≠0);
2)0没有倒数 ;
3)若a与b互为倒数,则ab=1.
4)倒数是它本身的是______.
6.绝对值:一个数a的绝对值就是数轴上表示数a的点与原点的距离.(让学生注意理解绝对值的定义及其的值为非负数的特点.)
1)数a的绝对值记作︱a︱;
若a>0,则︱a︱= ;
2) 若a<0,则︱a︱= ;
若a =0,则︱a︱= ;
3) 对任何有理数a,总有︱a︱≥0.
[基础练习]
1.—2的绝对值表示它离开原点的距离是 个单位.
2.绝对值等于其相反数的数一定是( )
A.负数 B.正数 C.负数或零 D.正数或零
3.计算
7.有理数大小的比较:(有理数的比较方法总结).
1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;
正数都大于0,负数都小于0;正数大于一切负数;
2)两个负数,绝对值大的反而小.
即:若a<0,b<0,且︱a︱>︱b︱,则a < b.
8.科学记数法、近似数与有效数字(给出科学记数法的定义,近似数和有效数字的等的定义)
1).把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数(即1≤a<10),这种记数法叫做科学记数法 .
2).一个近似数,从左边第一个不是0的数字起到,到精确到的数位止,所有的数字,都叫做这个数的有效数字.
[基础练习]
1.一只苍蝇的腹内细菌多达2800万个,你能用科学记数法表示吗?
2. 1.03×106有几位整数?
3. 3.0×10n(n是正整数)有几位整数?
4:下列由四舍五入得到的近似数,各精确到哪一位,各有几位有效数字?
(1)43.8(2)0.03086(3)2.4万(4)6×104 (5)6.0×104
(二)课堂小结:
要注意的几个问题
1.有理数的两种分类经常用到,应注意它们的区别;
2.数轴的三要素缺一不可,利用数轴可直观地比较有理数的大小;
3.相反数指的是两个仅符号不同的数,数轴上表示一对相反数的两个点到原点的距离相等,它们的和为0;而倒数指的是两个乘积为1的数;
4.一个数的绝对值总是非负数,数a的绝对值是数轴上表示数a的点到原点的距离;
(三)布置作业:
温馨提示:内容为网友见解,仅供参考
初一人教版数学上册知识点总结归纳
(一) 多彩几何图形 几何世界中,图形是多姿多彩的,其中立体图形包括棱柱、棱锥、圆柱、圆锥、球等。平面图形则有三角形、四边形、圆等。从不同角度观察这些图形,我们能得到它们的三视图,包括主视图、侧视图(左、右视图)和俯视图。通过学习,我们能判断简单物体的三视图,并能根据三视图描述基本几何...
七年级上册人教版数学知识点归纳整理
第一章 有理数 1、正数和负数 2、有理数 3、有理数的加减法 4、有理数的乘除法 5、有理数的乘方 第二章 一元一次方程 1、从算式到方程 2、从古老的代数书说起 3、从"买布问题"说起 4、再探实际问题与一元一次方程 第三章 图形认识初步 1、多姿多彩的图形 2、直线、射线、线段 3、...
人教版七年级数学上册知识点总结
预设1.“先分后总”的复习策略,先按章复习,后汇总复习; 2.“边学边练”的策略,在复习知识的同时,紧紧抓住练这个环节; 3.“环节检测”的策略,每复习一个环节,就检测一次,发现问题及时解决; 3.“仿真模拟”的复习策略,在总复习中,进行几次仿真测试,来发现问题,并及时解决问题,促进学生学习质量的提高。 4.及...
人教版七年级上册数学知识点整理
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数。3.多项式:几个单项式的和叫多项式。4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的...
人教版七年级数学上册期末复习大纲【五篇】
⑴模型思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想. ⑵方程思想:用方程解决实际问题的思想(如:按比例分配、线段的长、角的大小等)就是方程思想. ⑶转化(归纳)思想:解一元一次方程的过程,实质上就是利用去 分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,...
初一数学买什么教辅资料比较好?
初一好的数学教辅资料推荐:《新教材完全解读》、《特高级教师点拨》。1.人教版初一数学教辅资料的编写特点:《新教材完全解读》是由人教社编写的,该版本的教辅资料在教育界享有良好的口碑。这套资料注重教材解读和重点难点的突破,能够帮助学生更好地理解和掌握数学知识。2.人教版初一数学教辅资料的内容...
七年级上册人教版数学知识点归纳七年级数学上册知识点总结人教版
1、初一数学上册复习教学知识点归纳总结 一:有理数知识网络:概念、定义:大于0的数叫做正数(positive number)。2、2、在正数前面加上负号“-”的数叫做负数(negative number)。3、3、整数和分数统称为有理数(rational number)。4、4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number ...
数学七年级上册人教版知识点(集合7篇)
数学七年级上册人教版知识点 一、基础概念 1. 正数:比0大的数。2. 负数:比0小的数。3. 0:既不是正数也不是负数。4. 有理数:整数与分数的统称,包括正整数、0、负整数、正分数、负分数。5. 数轴:表示数的一条直线,具备原点、正方向、单位长度。二、统计与数据 1. 全面调查与抽样调查...
初一上册数学必背公式人教版是什么?
初一上册数学必背公式人教版介绍如下:1、判别式 b2-4ac=0注:方程有两个相等的实根。b2-4ac>0注:方程有两个不等的实根。b2-4ac<0注:方程没有实根,有共轭复数根<>。2、乘法与因式分解 a2-b2=(a b)(a-b)a3 b3=(a b)(a2-ab b2)a3-b3=(a-b(a2 ab b2)。3、三角不等式 |a ...
求人教版七年级上册期中数学复习要点
第一章 有理数 1.1 正数与负数 在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。1.2 有理数 正整数、0、负整数统称整数(integer),正分数和负分数统称...