如何巧记弹性碰撞后的速度公式

如题所述

由于弹性碰撞后的速度公式不好推导,该公式又比较繁杂不好记。因此导致这类考题的得分率一直较低。下面探讨一下该公式的巧记方法。
一、“一动碰一静”的弹性碰撞公式
问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度?

图1
设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得:
m1v1=m1v1'+m2v2'①
②
由① ③
由② ④
由④/③ ⑤
联立①⑤解得
⑥
⑦
上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得:
m1v1= (m1+m2) v共
解出v共=m1v1 /(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。
另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式。再结合①式也可很容易解得⑥⑦式。
二、“一动碰一动”的弹性碰撞公式
问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度?

图2
设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得:
m1v1+m2v2=m1v1'+m2v2'①
②
由① ③
由② ④
由④/③ ⑤
由③⑤式可以解出
⑥
⑦
要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可等效成m1以速度v1去碰静止的m2球,再同时加上m2球以速度碰静止的m1球。因此由前面“一动碰一静”的弹性碰撞公式,可得两球碰撞后各自的速度+;+,即可得到上面的⑥⑦式。
另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1- v2等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式,再结合①式可解得⑥⑦式。
例题:如图3所示,有大小两个钢球,下面一个的质量为m2,上面一个的质量为m1,m2=3m1。它们由地平面上高h处下落。假定大球在和小球碰撞之前,先和地面碰撞反弹再与正下落的小球碰撞,而且所有的碰撞均是弹性的,这两个球的球心始终在一条竖直线上,则碰后上面m1球将上升的最大高度是多少?

图3
解法1:
设两球下落h后的速度大小为v1,则
v12=2gh ①
选向上为正方向,m2球与地面碰撞后以速度v1反弹并与正在以速度-v1下落的m1球发生弹性碰撞,设m1和m2两球碰撞后瞬间的速度分别变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得:
m1(-v1)+m2v1=m1v1'+m2v2'②
③
将m2=3m1代入,得
2v1=v1'+3v2'④
⑤
由④⑤式消去v2'得:

即
故解出v1'=v1(舍去,因为该解就是m1球碰前瞬间的速度)
v1'=2v1 ⑥
设碰后上面球m1上升的最大高度为h',则
0-v1'2=-2gh'⑦
联立①⑥⑦式解出h'=4h。
解法2:
在解法1中,列出②③式后,可根据前面介绍的用等效法得到的“一动碰一动”的弹性碰撞公式,求出m1球碰撞后瞬间的速度v1'。
选向上为正方向,m1、m2两球分别以速度-v1和v1发生对心弹性碰撞,可等效成m1以速度-v1去碰静止的m2球,再同时加上m2球以速度v1碰静止的m1球。因此m1球碰撞后的速度+
将m2=3m1代入得v1'=2v1。
以下同解法1。
解法3:
在解法1中,列出②③式后,也可根据前面介绍的用等效法得到的“一动碰一动”的弹性碰撞公式,求出m2球碰撞后瞬间的速度v2'。
选向上为正方向,m1、m2两球以速度-v1和v1发生的对心弹性碰撞,可等效成m1以速度-v1去碰静止的m2球,再同时加上m2球以速度v1碰静止的m1球。因此碰撞后m2球的速度
+
将m2=3m1代入解得v2'=0。
从m1球开始下落到m1球上升的最大高度,对m1、m2两球组成的系统,由能量守恒得:
(m1+m2)gh= m1gh'
故解出h'=4h。
解法4:
设两球下落h后的速度大小为v1,则
v12=2gh ①
选向上为正方向,m2球与地面碰撞后以速度v1反弹并与正在以速度-v1下落的m1球发生弹性碰撞,若以m2球为参考系,则m1球以相对m2球为-2v1的速度去碰静止的m2球,由“一动碰一静”的弹性碰撞公式得:

由于碰前m2球对地的具有向上的速度v1,
故碰后m1球对地的速度为:+ v1=2v1。
以下同解法1。
上面的解法1属于常规的数学解法,求解比较麻烦,用时间也比较长而且容易出错。而解法2、3、4直接应用巧记得到的弹性碰撞速度公式求解,简单而不易出错,是比较好的选择。
温馨提示:内容为网友见解,仅供参考
无其他回答

弹性碰撞后两物体速度公式
弹性碰撞后两物体速度公式v1= (2m2v2-m2v1v2+m1v1)\/ (m1+m2),v2= (2m1v1-m1v2+m2v2)\/ (m1+m2)解析设:m1、m2分别代表两个小球的质量;v1、v2分别代表碰撞前两个小球的速度;v1,v2分别代表碰撞后两个小球的速度根据动量守恒定律有:m1v1+m2v2=m1v1+m2v2根据能量守恒:1\/2m1v1^2+...

完全弹性碰撞公式巧记
1、完全弹性碰撞的速度公式是怎么推导的:由动量守恒:m1*v1+m2*v1=m1*u1+m2*u2能量守恒:0.5m1*v1^2+0.5m2*v2^2=0.5m1*u1^2+0.5m2*u2^2并不完全消元,可解得一个关系:v1+u1=v2+u2把式子变形一下就是v1-v2=u2-u1左边是碰撞前物体1接近物体2的相对速度。右边是碰撞后物体2...

弹性碰撞速度公式
故碰后m1球对地的速度为+ v1=2v1以下同解法1上面的解法1属于常规的数学解法,求解比较麻烦,用时间也比较长而且容易出错而解法234直接应用巧记得到的弹性碰撞速度公式求解,简单而不易出错,是比较好的选择;动量定理是动力学的普遍定理之一,那么,动量定理碰撞速度公式是什么呢下面我整理了一些相关信息...

如何巧记弹性碰撞后的速度公式
在解法1中,列出②③式后,也可根据前面介绍的用等效法得到的“一动碰一动”的弹性碰撞公式,求出m2球碰撞后瞬间的速度v2'。选向上为正方向,m1、m2两球以速度-v1和v1发生的对心弹性碰撞,可等效成m1以速度-v1去碰静止的m2球,再同时加上m2球以速度v1碰静止的m1球。因此碰撞后m2球的速度...

弹性碰撞速度公式推导及巧记方法
由于弹性碰撞后的速度公式不好推导,该公式又比较繁杂不好记。因此导致这类考题的得分率一直较低。下面探讨一下该公式的巧记方法。完全弹性碰撞V1',V2'公式 m1v1+m2v2=m1v1'+m2v2'1\/2m1v1^2+1\/2m2v2^2=1\/2m1v1'^2+1\/2m2v2'^2 由一式得m1(v1-v1')=m2(v2'-v2)...a 由二...

弹性碰撞后两物体速度公式是什么?
v1',v2'分别代表碰撞后两个小球的速度。根据动量守恒定律有:m1v1+m2v2=m1v1'+m2v2'。根据能量守恒:1\/2m1v1^2+1\/2mv2^2=1\/2mv1'^2+1\/2mv2'^2。化简得:v1'=(2m2v2-m2v1v2+m1v1)\/(m1+m2)。v2'=(2m1v1-m1v2+m2v2)\/(m1+m2)。经济学中的“弹性”:1、需求的价格弹性 ...

如何巧记弹性碰撞后的速度公式
首先,我们注意到"一动碰一静"的情况,如图1所示,当质量m1的小球以速度v1与静止的m2小球碰撞,利用动量和机械能守恒定律,可以得到公式⑥和⑦。通过分析,当两球速度相同时,我们可以利用动量守恒求出共同速度v共,然后通过对称性推导出⑦式,这样记忆起来就更加直观。对于"一动碰一动"的情况,如图2...

一动碰一静弹性碰撞后,速度公式是什么?
一动碰一静弹性碰撞后速度公式:v1' = (m1-k*m2)*v1\/(m1+m2)+ 2*k*m2*v2\/(m1+m2)v2' = 2*m1*v1\/(m1+m2)- (m2-k*m1)*v2\/(m1+m2)。其中,v1'表示动物1的碰撞后速度,v2'表示静物的碰撞后速度,m1和m2分别表示动物1和静物的质量,k表示碰撞的反弹系数。在小物体...

完全弹性碰撞后速度是什么?
在动量守恒定律中,完全弹性碰撞下物体的速度变化可以通过以下公式推导。当两个物体,质量分别为m1和m2,以初始速度v10和v20相互碰撞,碰撞后速度分别为v1和v2时,根据动量守恒定律和能量守恒定律,我们可以得到以下关系:动量守恒:m1v10 + m2v20 = m1v1 + m2v2 能量守恒:1\/2m1v10^2 + 1\/2m...

如何用碰撞后两物体速度公式?
弹性碰撞后两物体速度公式为:推导证明如下:光滑水平面上有质量分别为m1、m2的小球,其中m1有水平向在右的速度V1,m2静止,求碰撞以后两者的速度。(碰撞过程为弹性碰撞)分析:在碰撞过程中能量守恒和动量守恒。由能量守恒:联立以上两式:(这个结果最好记住!)分析最终结果可知:当m1>m2时,两小球...

相似回答