第1个回答 2014-12-15
∫x^2dx/√(a^2-x^2)
=-∫(a^2-x^2)dx/√(a^2-x^2)+∫a^2dx/√(a^2-x^2)
=-∫√(a^2-x^2)dx+a^2∫dx/√(a^2-x^2)
对∫√(a^2-x^2),设x=asint,dx=acostdt,t=arcsin(x/a),
sin2t=2sintcost=2(x/a)*√(1-x^2/a^2)=2(x/a^2)√(a^2-x^2)
∫√(a^2-x^2)=∫acost*acostdt=(a^2/2)∫(1+cos2t)dt=a^2t/2+a^2sin2t/4+C1
=a^2arcsin(x/a)/2+x√(a^2-x^2)/2+C1
∴原式=-a^2arcsin(x/a)/2-x√(a^2-x^2)/2+a^2arcsinx/a+C.
=a^2arcsin(x/a)/2-x√(a^2-x^2)/2+C.
望采纳