7种不同的数据标准化(归一化)方法总结

如题所述

数据标准化在数据预处理中扮演着关键角色,本文将详细介绍7种常见的数据标准化方法。首先,小数位归一化是针对数字型数据的处理,通过调整小数位数保持一致性。其次,数据类型归一化则关注将不同格式的数值统一为同一类型,便于后续分析。格式归一化主要针对文本数据,确保一致性,尽管对分析影响不大,但可能影响阅读体验。

对于数据分布差距较大的情况,Z-Score归一化是一种有效的解决方案,通过将数据缩放到特定区间,便于比较和分析。线性归一化,也称为“Max-Min”归一化,通过计算最大值和最小值的差值来调整数据范围,适用于灵活的场景。裁剪归一化则涉及异常值的处理,通过重新设定数据集的上下限来保持数据集的一致性。

标准差归一化以计算每个变量的标准化值,特别在处理多变量数据时常见。在选择何时归一化时,需要考虑算法的需求。涉及距离计算的算法如K-means、KNN、PCA和SVM通常要求归一化,而与距离无关的模型如Naive Bayes则无需。对于梯度下降算法和采用饱和激活函数的模型,归一化可以影响收敛速度和模型性能。

总结来说,不同的数据标准化方法适用于不同的场景,理解并选择合适的方法对提高数据分析和模型训练效果至关重要。作者:Manish
温馨提示:内容为网友见解,仅供参考
无其他回答

7种不同的数据标准化(归一化)方法总结
1. 小数位归一化 (Decimal Place Normalization)在数字数据表中,小数位归一化是基础的调整,Excel等工具默认保留两位小数,但可以通过设置统一整个表中的精度。这种归一化简单直观,但对数据类型的要求较高。2. 数据类型归一化 (Data Type Normalization)在数据清洗过程中,遇到类型不一致的数据,如货币、...

7种不同的数据标准化(归一化)方法总结
数据标准化在数据预处理中扮演着关键角色,本文将详细介绍7种常见的数据标准化方法。首先,小数位归一化是针对数字型数据的处理,通过调整小数位数保持一致性。其次,数据类型归一化则关注将不同格式的数值统一为同一类型,便于后续分析。格式归一化主要针对文本数据,确保一致性,尽管对分析影响不大,但可能...

数据标准化的几种方法
数据标准化的几种方法:一、线性转换法 线性转换法是最常见的数据标准化方法,也称为离差标准化或Z值标准化。该方法将数据点减去均值后除以标准差,得到标准化后的数据。这种方法适用于数据分布近似正态分布的情况。线性转换法的公式为:Z = \/ σ,其中x为原始数据,μ为均值,σ为标准...

数据标准化的几种方法
其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上,常见的数据归一化的方法有:min-max标准化(Min-max normalization)也叫离差标准化,是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:其中max为样本数据的最大值,min为样本数据的最小值。log函数转换通过以10为底的...

标准化和归一化什么区别?
3. MaxAbs标准化:将特征值缩放至[-1,1]区间,使得所有特征值的最大绝对值为1。4. Normalizer:将特征向量的长度归一化为1,适用于处理正则化或距离计算任务。以「身高」和「体重」数据集为例,经过不同缩放方法处理后的图像显示:使用Z-score标准化后,数据分布更均匀且中心对齐。应用Min-Max标准...

python数据归一化及三种方法详解
另一种常用方法是Z-score标准化,即均值归一化(mean normaliztion),给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1。转换函数为:(x - μ) \/ σ,其中μ为所有样本数据的均值,σ为所有样本数据的标准差。在...

数据标准化和归一化的区别
归一化的方法有很多种,常用的有最小-最大归一化(Min-Max Normalization),它的公式一般为:(x - min) \/ (max - min),其中x是原始数据,min是最小值,max是最大值。经过最小-最大归一化处理后,数据将缩放到[0,1]的范围内。总的来说,数据标准化和归一化都是用来调整数据尺度的方法,但...

数据标准化的几种方法
一、Min-max 标准化min-max标准化方法是对原始数据进行线性变换。设minA和maxA分别为属性A的最小值和最大值,将A的一个原始值x通过min-max标准化映射成在区间[0,1]中的值x',其公式为:新数据=(原数据-极小值)\/(极大值-极小值)二、z-score 标准化这种方法基于原始数据的均值(mean)和...

数据标准化方法
数据标准化是一种关键的数据处理技术,它通过统一的数据组织、格式转换和编码,使得不同单位或量级的数据可以进行有效的比较和加权。这里介绍几种常见的数据标准化方法:Z-score标准化: 通过公式实现,通常使用编程工具如Python的scikit-learn库。首先,通过fit方法基于训练数据创建标准化转换器,再用transform...

几种常见的数据标准化的方法总结
归一化也是一种常见的量纲处理方式,可以让所有的数据均压缩在【0,1】范围内,让数据之间的数理单位保持一致。(3)中心化 中心化 这种量纲处理方式可能在社会科学类研究中使用较多,比如进行中介作用,或者调节作用研究。其计算公式为:x-μ。此种处理方式会让数据呈现出一种特征,即数据的平均值一定为...

相似回答
大家正在搜