高中常用的不等式公式有:
(1)(a+b)/2≥√ab
(2)a^2+b^2≥2ab
(3)(a+b+c)/3≥(abc)^(1/3)
(4)a^3+b^3+c^3≥3abc
(5)(a1+a2+…+an)/n≥(a1a2…an)^(1/n)
(6)2/(1/a+1/b)≤√ab≤(a+b)/2≤√[(a^2+b^2)/2]
扩展资料:
不等式基本性质:
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)
不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)
不等式两边相乘或相除同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)
不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)
参考资料:百度百科---基本不等式
不等式的基本性质
1、传递性:如果a≤b且b≤c,则a≤c。2、反对称性:如果a≤b且b≤a,则a=b。3、加法性:如果a≤b,则a+c≤b+c,其中c为任意实数。4、乘法性:如果a≤b,且c为正实数或零,则ac≤bc;如果c为负实数,则ac≥bc。5、不等式的加减混合性:如果a≤b且c≤d,则a+c≤b+d。6、不等...
不等式的基本性质都有哪些?
不等式的基本性质: 性质1:如果a>b,b>c,那么a>c(不等式的传递性). 性质2:如果a>b,那么a+c>b+c(不等式的可加性). 性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d. 性质5:如果a>b>0,c>d>0,那么ac>bd. 性质6:如果a>b>0,n∈N,n>1,那么an>bn...
不等式的基本性质有哪些?
1. 不等式两边同时加或减去同一个数,不等号方向不变。2. 不等式两边同时乘以或除以同一个正数,不等号方向不变。3. 不等式两边同时乘以或除以同一个负数,不等号方向发生改变。首先,不等式两边同时加或减去同一个数,不等号方向不变。这个性质说明,在不等式的两边进行相同的加法或减法运算,不...
不等式的基本性质有?
基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变,基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变 基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变
不等式的性质有哪些?
基本性质 ①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,m>n,...
不等式的基本性质有哪些?
不等式的基本性质有:对称性;传递性;加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。另,不等式性质有三:不等式的两边都加上或减去同一...
不等式的基本性质知识点归纳
不等式的基本性质知识点归纳如下:1、如果x>y,那么y<x;如果y<x,那么x style="padding:Opx;box-sizing:border-box; margin: Opx; -webkit-user-drag: auto !important; user-select:text!important;">y;(对称性)2、如果x>y,y>z;那么x〉z;(传递性)3、如果x>y,而z为任意实数或整式,...
不等式最基本的两种性质
不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向要变向.2.等式性质与不等式性质的区别 其最大区别...
不等式的基本性质?
不等式的基本性质:对称性;传递性;加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子。一元一次不等式:含有一个未知数,并且未知数的次数是1次的不等式,如3-x>...
不等式基本性质 导入有什么例子
不等式的基本性质:性质1:如果a>b,b>c,那么a>c(不等式的传递性).性质2:如果a>b,那么a+c>b+c(不等式的可加性).性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.性质5:如果a>b>0,c>d>0,那么ac>bd.