已知函数f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)求f‘(2) 导数问题

如题所述

f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)
f'(x)=(x-1)'(x-2)(x-3)(x-4)(x-5)(x-6)+(x-1)(x-2)'(x-3)(x-4)(x-5)(x-6)+(x-1)(x-2)(x-3)'(x-4)(x-5)(x-6)+(x-1)(x-2)(x-3)(x-4)'(x-5)(x-6)+(x-1)(x-2)(x-3)(x-4)(x-5)'(x-6)+(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)'
=(x-2)(x-3)(x-4)(x-5)(x-6)+(x-1)(x-3)(x-4)(x-5)(x-6)+(x-1)(x-2)(x-4)(x-5)(x-6)+(x-1)(x-2)(x-3)(x-5)(x-6)+(x-1)(x-2)(x-3)(x-4)(x-6)+(x-1)(x-2)(x-3)(x-4)(x-5)
则除了第二项,其他都有x-2
所以x=2时等于0
所以f'(2)=(2-1)(2-3)(2-4)(2-5)(2-6)=24
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-02-20
对于f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)两边同时取对数,得
lnf(x)=ln(x-1)+ln(x-2)+ln(x-3)+ln(x-4)+ln(x-5)+ln(x-6)
两边同时求导得f'(x)/f(x)=1/(x-1)+1/(x-2)+1/(x-3)+1/(x-4)+1/(x-5)+1/(x-6)
∴f'(x)=f(x)*[1/(x-1)+1/(x-2)+1/(x-3)+1/(x-4)+1/(x-5)+1/(x-6)]
∴ 由导数形式可知,只要展开式中有(x-2)项,f'(x)那项为0
∴f'(2)=(2-1)(2-3)(2-4)(2-5)(2-6)=24
第2个回答  2011-02-20
记f(x)=(x-2)g(x),其中g(x)=(x-1)(x-3)(x-4)(x-5)(x-6),得g(2)=4!=24
那么f'(x)=g(x)+(x-2)g'(x)
则f'(2)=g(2)=24.
第3个回答  2011-02-20
f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)
f'(x)=(x-2)(x-3)(x-4)(x-5)(x-6)+(x-1)(x-3)(x-4)(x-5)(x-6)+(x-1)(x-2)(x-4)(x-5)(x-6)+.............
f'(2)=0+1*(-1)*(-2)*(-3)*(-4)+0......+0
=24
第4个回答  2011-02-20
f(x)=)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)
f'(x) = {(x-1)(x-3)(x-4)(x-5)(x-6) d/dx( x-2)} + {(x-2) d/dx[(x-1)(x-3)(x-4)(x-5)(x-6)]}
f'(2) = (2-1)(2-3)(2-4)(2-5)(2-6)
= 1(-1)(-2)(-3)(-4)
= 24

已知函数f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)求f‘(2) 导数问题
f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)f'(x)=(x-1)'(x-2)(x-3)(x-4)(x-5)(x-6)+(x-1)(x-2)'(x-3)(x-4)(x-5)(x-6)+(x-1)(x-2)(x-3)'(x-4)(x-5)(x-6)+(x-1)(x-2)(x-3)(x-4)'(x-5)(x-...

若函数f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),且f'(x)是函数f(x)的导函
做个变形,令f(x)=(x-1)*g(x),则f'(x)=g(x)+(x-1)*g'(x),则f'(1)=g(1)=1*2*3*4=12

f(x)=x(x-1)(x-2)(x-3)(x-4)(x-5)的导数怎么求
解析如下:f(x)=x(x-1)(x-2)(x-3)(x-4)(x-5)lnf(x)=lnx+ln(x-1)+ln(x-2)+ln(x-3)+ln(x-4)+ln(x-5)f'(x)\/f(x)=1\/x+1\/(x-1)+1\/(x-2)+1\/(x-3)+1\/(x-4)+1\/(x-5)∴f'(x)=f(x)[1\/x+1\/(x-1)+1\/(x-2)+1\/(x-3)+1\/(x-4)+1\/(x...

...f ( x )= x ( x -1)( x -2)( x -3)( x -4)( x -5),则 f ′(0)=...
-120 f ′( x )=( x -1)( x -2)( x -3)( x -4)( x -5)+ x [( x -1)( x -2)( x -3)( x -4)( x -5)]′,∴ f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120.

函数f(x)=x(x-1)(x-2)(x-3)(x-4)(x-5) 则f'(0)=?.请您说具体些
这个题很简单啊,先求f'(x)再求f'(0),f'(x)=(x-1)(x-2)(x-3)(x-4)(x-5)+x*(x-1)'(x-2)(x-3)(x-4)(x-5)+x(x-1)(x-2)'(x-3)(x-4)(x-5)+……所以f'(0)=(-1)*(-2)*(-3)*(-4)*(-5)=-120 ...

已知f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),则f′(1)=__
∵f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),∴令g(x)=(x-2)(x-3)(x-4)(x-5),则f(x)=(x-1)g(x)∴f′(x)=(x-1)′g(x)+(x-1)g′(x)=g(x)+(x-1)g′(x),则f′(1)=g(1)+(1-1)g′(1)=g(1)...

已知f(x)=x(x-1)(x-2)(x-3)(x-4)(x-5),则f(0)=?
f(0)=0×﹙-1﹚×﹙-2﹚×﹙-3﹚×﹙-4﹚×﹙-5﹚=0

已知f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),则f'(1)=?
答案是二十四 因为求的是一的导数值 所以把X减一看作一项 后边看作一项 利用乘法法则求导函数 求时现别化开你会发现后边的代一的话可以消掉 然后只给前边的带值就能求出

不用求函数f(x)=(x-1)(x-2)(x-3)(x-4)+5的导数 说明方程f′(x)=0有...
简单分析一下,详情如图所示

设函数f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(
f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10),f’(x)在x=1时只有[(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10)]不等于0,所以 f’(1)=(-1)*(-2)*。。。*(-9)=-362880 ...

相似回答