如何用球面三角形面积公式证明欧拉公式?请给出详细的证明步骤,多谢了!
球面三角形面积公式S=A+B+C-∏,欧拉公式F-E+V=2.注意是用"球面三角形面积公式"证明,不是用其它方法,请高手赐教!截至5-28 10:34,尚无满意解答.
参考资料:baidu
急!!!如何用球面三角形面积公式证明欧拉公式?
所有面全部为三角形时,由于每个面有3条边,而每条边又为2个面所共有,因而2E=3F,则F-E=-F\/2,下面再证明V-F\/2=2即可。每一个顶点的一个周角2∏被若干个球面三角形的角围成,因而所有三角形的内角总和为2∏V,一个球面三角形的面积为A+B+C-∏,则所有三角形的面积为:所有三角形内角...
欧拉公式的证明
欧拉公式的证明如下:欧拉公式证明是:R+ V- E= 2。拓扑学中,在任何一个规则球面地图上,用R记区域个数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理,于1640年由 Descartes首先给出证明 ,后来 Euler欧拉于 1752年又独立地给出证明 ,称其为欧拉定理 ,在国外也有人...
欧拉定理的三种证明方式是什么
欧拉公式的三种形式如下:R+V-E=2,在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理。此定理由Descartes首先给出证明,后来Euler独立给出证明,欧拉定理亦被称为欧拉公式。在复分析领域,欧拉公式关联三角函数与复数指数函数,公式表达为:e^(ix...
欧拉公式怎么推导的?
欧拉公式:点数+面数-棱数=2 如:长方体:8点6面12条棱,8+6-12=2 n棱锥:点+面-棱=(n+1)+(n+1)-2n=2 n棱柱:点+面-棱=2n+(n+2)-3n=2
欧拉公式的三种形式
欧拉公式的三种形式如下:R+V-E=2,在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理,它于1640年由Descartes首先给出证明,后来Euler于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理。欧拉公式又称为欧拉定理,...
欧拉公式证明是怎么样的?
欧拉公式证明是,在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R加V减E等于2,这就是欧拉定理 ,它于 1640年由 Descartes首先给出证明 ,后来 Euler欧拉 于1752年又独立地给出证明,我们称其为欧拉定理 ,在国外也有人称其为Descartes定理。第一个欧拉公式的...
欧拉公式是什么公式?
多面体的欧拉公式是:V+F–E=2。若用F表示一个正多面体的面数,E表示棱数,V表示顶点数,则有F+V-E=2,即“表面数+顶点数-棱长数=2”。F+V-E=2,这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的...
欧拉公式是怎么样的?
欧拉公式是:e^(ix)=cos(x)+i*sin(x)。欧拉公式在不同的学科中有着不同的含义。复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,e是自然对数的底,i是虚数单位。拓扑学中,在任何一个规则球面地图上。用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉...
欧拉公式是什么?反应了什么?
(3)三角形中的欧拉公式:设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr (4)拓扑学里的欧拉公式:V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。如果P可以同胚于一个球面(可以通俗...
欧拉公式
那么这个公式的证明就很简单了,利用上面的e^±ix=cosx±isinx。 那么这里的π就是x,那么 e^iπ=cosπ+isinπ =-1 那么e^iπ+1=0 这个公式实际上是前面公式的一个应用 三角形与欧拉公式 设R为 三角形 外接圆半径,r为内切圆半径,d为 外心 到内心的距离,则: d^2=R^2-2Rr 拓扑学...