矩阵逆矩阵的行列式等于原矩阵行列式的倒数。
证明如下:
因为 AB=BA=E(单位阵),B是A的逆矩阵.
所以 |AB|=|BA|=1.
当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,
有 |B|=1/|A|.
扩展资料
性质定理
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。