K=(α十d)÷2
...b个黑球。每次取一个不放回,接连取出k个。求第k次取到白球的概率...
第一次抽到黑球的概率是b\/(a+b),第二次抽到黑球的概率分两中情况:1. 第一次抽黑球,则概率为b\/(a+b)*(b-1)\/(a+b-1);2. 第一个人抽白球,则概率为a\/(a+b)*a\/(a+b-1)。两个情况加起来,正好是a\/(a+b)以后每次情况都是一样的。
...每次取一个不放回,接连取出k个。第k次取白球的概率?
袋中有a个白球,b个黑球。每次取一个不放回,接连取出k个,第k次取白球的概率为a/(a+b)。解:将a个白球及b个黑球看成是彼此不同的,把它们编号,a个白球分别编号为1,2,⋯⋯,a;b个黑球编号为a+1,a+2,⋯⋯,a+b。试验Y为观察第k次被摸到的球的号数...
盒子里有a个白球,b个黑球,现依次从盒子取球,每次取一个(不放回),第K...
第k次取到黑球的概率 a\/(a+b)第K次才取到黑球的概率 就是前k-1次都取到白球【b\/(a+b)】^(k-1)*[a\/(a+b)]前k次中能取到黑球的概率它的相反事件 前k次中都取到白球p=【b\/(a+b)】^k所以 前k次中能取到黑球的概率p=1-【b\/(a+b)】^k ...
袋中有a个白球和b个黑球,从中不放回地取k次(每次取一个)(1≤k≤a+b...
【答案】:口袋中的每个球被取出的概率相同,都为 1\/(a+b)取白球的概率为 a\/(a+b)
...将球一只只取出,不放回。求第K次取出白球的概率。
法一:此为古典概型,简单的做法是只考虑第K次取球,取到白球的可能性是a种,这是分子;共有a+b种取法即样本空间为a+b,为分母。所以答案为a\/(a+b) 。法二:利用全概率公式结合数学归纳法(此类题的通用方法,很重要的)对第一次取到球的情况做分割,然后利用全概率公式结合数学归纳法即可 ...
...口袋中有a个白球,b个黑球,从中一个一个不返回地摸球
因为不放回,所以你可以这样思考这个问题:既然是问剩下最后一个球的颜色的概率,那你可认为你先拿出的球就是最后一个球,那么拿到白球的概率就应该是:白球数\/总球数=a\/(a+b)概率,又称或然率、机会率或机率、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,表示一个事件发生的可能...
口袋里有a个白球,b个黑球,从中一个一个不返回的摸球,直至留在袋子里为...
因为不放回,所以你可以这样思考这个问题:既然是问剩下最后一个球的颜色的概率,那你可认为你先拿出的球就是最后一个球(即按照刚才的顺序从后往前拿),那么拿到白球的概率就应该是 白球数\/总球数=a\/(a+b)解答完毕。希望我讲的很明白。
袋中有a个白球b个黑球,现从中一个个不放回地取出,一直取到袋中只剩...
解释一下,就是倒数第一个是白球,倒数第二个是黑球;然后倒数两个都白,倒数第三是黑;倒数3个斗白,倒数第四是黑;。。。一直加到最后a个都是白的 其实,只要最后一个是白的,就包含了上述的所有排法,因此有C(a+b-1,a-1)种 总的排法有C(a+b,a)种,所以概率是C(a+b-1,a-1)\/C...
...作不放回抽样,求第k(k《n)个人取得白球的概率?
第k(k<n)个人取得白球的概率是a\/(a+b)--- 解释:第k (k<n)个人取得白球的概率也就是a+b只球排序,排在第k个位置的是白球的概率。
袋中有a只黑球 b只白球,每次抽取一球(不放回),求第i次取到黑球的...
回答:每次抽取一球(不放回), 第 i 次取到黑球的概率是 a\/(a+b) --------解释--------- 第 i 次取到黑球的概率也就是a只黑球 b只白球排队,排在第 i 个位置的是黑球的概率