在坐标系xoy中,圆心在坐标原点,半径r(r>0),用定积分的方法求该圆的面积 ?请求答题过程与答案 谢谢

第二个题: 一曲线通过点(2,3),他在两个坐标轴见的任意切线段被切点所平分,求这条曲线的方程 请求这两题的 解答过程与答案 谢谢

第1个回答  2011-06-20
可以将这个圆分成四等分,所以圆的面积等于:
S=4∫f(x)dx。只要用到简单的积分公式就可以
第二个题目,你就利用条件,这条曲线上载坐标轴之间的任意坐标(m,n),这一点的切线方程与Y轴和X轴有两个交点,可以知道,其任意一点的切线方程为:
y-n=y‘(x-m)
他与X轴的交点为(m-n/y',0),与Y轴的交点坐标为(0,-y'm/n),根据题意,这两点的中点坐标就是(m.n),于是可以建立起方程:
m/2-n/(2y')=m
-y'm/(2n)=n
由此可以建立起y’和mn的关系式,最后利用微分方程解出来就可以,然后利用点(2,3)求出常数

...用定积分的方法求该圆的面积 ?请求答题过程与答案 谢谢
可以将这个圆分成四等分,所以圆的面积等于:S=4∫f(x)dx。只要用到简单的积分公式就可以 第二个题目,你就利用条件,这条曲线上载坐标轴之间的任意坐标(m,n),这一点的切线方程与Y轴和X轴有两个交点,可以知道,其任意一点的切线方程为:y-n=y‘(x-m)他与X轴的交点为(m-n\/y',0),与...

在xoy坐标系中,圆心在坐标原点,半径r(r>0),用定积分的方法求该圆的面 ...
法(1)这个式子求的是上半圆的面积,只需乘以2即可得整个圆的面积 法(2)用上半圆对应的曲线方程√(x²-R²)的积分减去下半圆对应的曲线方程-√(x²-R²)的积分即可 法(3)用上半圆对应的曲线方程√(x²-R²)减去下半圆对应的曲线方程-√(x²-R&#...

怎么用定积分和微积分基本定理推导球的表面积公式?
要先看看偏导数和重积分,极坐标,等等了,推导如下 偏导数的符号我用ψ来表示了,那个符号打不出 曲面面积公式:S=∫∫(D)√1+(ψz\/ψy)^2+(ψz\/ψx)^2 dxdy if球的半径为a 取上半球的方程z=√a^2-x^2-y^2 它在x0y上的投影区域D=(x,y)x^2+y^2≤a^2 ψz\/ψy=-x...

怎样用定积分算圆的周长与圆的面积?详细点啊,谢谢了!!
求园的面积:以圆心为坐标原点,用二元一次方程求解,后期用半径和角度替换横坐标,后面就很容易积分了

以(x,y)为圆心、半径为R的圆 用定积分怎么表示?
圆的方程为:x² + y² = R²y = √(R² - x²) 或 y = -√(R² - x²),考虑在第一象限的区域,0 ≤ x ≤ R 1\/4圆的面积为∫(0~R) √(R² - x²) dx 1\/2圆的面积为∫(-R~R) √(R² - x²) dx ...

如何用定积分推导圆的面积
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦...

如何用定积分的方法求球的表面积?
圆的方程x^2+y^2=r^2,所以y=f(x)=(r^2-x^2)^(1\/2)S=2∫(0,r)2πf(x)[1+(f'(x))^2]^(1\/2)dx =4π∫(r^2-x^2)^(1\/2)*[1+x^2\/(r^2-x^2)]^(1\/2)dx =4π∫(r^2-x^2)^(1\/2)*[r^2\/(r^2-x^2)]^(1\/2)dx =4π∫(0,r)rdx =4πr^...

圆的面积怎么求
详情请查看视频回答

用定积分计算圆的面积
以x^2+y^2=r^2为例:4∫[0~r]√(r^2-x^2)dx 上式可用换元法发来算,我以为你会呢,所以没写,汗~!设:x=rsint 则上式变为4∫[0~π\/2]rcostd(rsint)=4∫[0~π\/2]r^2(cost)^2dt =4r^2∫[0~π\/2](1+cos2t)\/2dt =4r^2(π\/4+∫[0~π\/2](cos2t\/4)d(2t)...

圆形的面积怎么计算?
其中S表示圆的面积;π为圆周率,它是一个无限不循环小数,一般无特殊要求的情况下,计算中π≈3.14;r是圆的半径。如,一个圆的半径为2厘米,那么这个圆的面积则为3.14乘以2的平方,经计算,该圆的面积为12.56平方厘米。开普勒也仿照切西瓜的方法,把圆分割成许多小扇形;不同的是,他一开始就...

相似回答