高中数学排列组合问题

在一张节目表原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,

求共有多少和安排方法?

答案;504

3种情况
1.3个节目都一起,A(3,3)然后插空法,6个节目7个空选一个
A(3,3)*C(1,7)=42
2.2个节目一起,7个空选两个C(2,7),再3个节目选两个排列,C(2,3)*A(2.2)*,再总的进行排列
A(2,2)
C(2.7)*A(2.2)*A(2,2)=252
3个节目都分开,7选3再排列
C(3.7)*A(3,3)=210
总共42+252+210-504
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-06-27
共有7个空,要分类讨论:
1)三个不连续,A上3 下7
2)两个连在一起,(A上2下2)×(A上2下7)
3)三个在一起,(A上3下3)×(A上1下7)
再把三个结果加起来即可。
第2个回答  2011-06-27
六个节目算上前后共有7个位置
那么加的第一个节目有7种放法
此时有七个节目,那么有8个位置
加的第二个节目有8种放法
同理:加的第三个节目有9种放法
所以:共有7*8*9=504种

希望我的回答对你有帮助,采纳吧O(∩_∩)O!
第3个回答  2011-06-27
1.n=A(9,9)/A(6,6)=7*8*9=504
2.把6个节目和3个+看成9个元素,从中取出3个+号
所以有A(9,3)=7*8*9=504种
第4个回答  2011-06-27
插空法,三个节目插七个空,讨论两两相邻和三个相邻的情况,注意其本身的排列。式子的符号我打不出来,自己列吧。希望有所帮助。

高中数学,排列组合。要解释。有好评
【解析】(1)选出一个盒子不放球,有4种选择,4个球中有2个放入同一盒中,C(4,2)种 分成3组后,放入3个盒中,有A(3,3)种 所以,共有4×C(4,2)×A(3,3)=144(种)(2)同(1),144种 (3)4个球分成2组 ①1+3,有4种分法 ②2+2,有3种分法 所以,共有4+...

高中数学排列组合秒杀技巧
1、相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。2、相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。3、定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,...

如何求解高中数学题目中的排列组合问题?
解:由于只取3个字母进行排列,因此n=4,m=3,代入公式可得:P(4,3)=4!\/(4-3)!=4×3×2=24 所以,从A、B、C、D四个字母中取出3个字母进行排列,共有24种排列方法。2. 组合 组合是从n个不同元素中取出m(m≤n)个不同元素的所有组合方式的数目,通常用C(n,m)表示。公式:C(n,m)...

高中数学联通移动手机排列组合问题
数字有1,3,8,9.联通号码是130、131、133开头,所以这四个数字组合得出有131和133这两个开头的号码,手机号码共11位,所以后面还有8位数,一共有(2*4^8)个联通号码。同理,移动号码有138和139这两个开头的号码,一共有(2*4^8)个移动号码。所以,移动和联通号码总个数为(2*4^8)+(...

高中数学排列组合常用解题方法
3、定序问题,采用缩倍法;4、标号排位问题,采用分步法;5、有序分配问题,采用逐分法;6、多元问题,采用分类法;7、交叉问题,采用集合法;8、定位问题,采用优先法;9、多排问题,采用单排法;10、至少问题,采用间接法;11.选排问题,采用先取后排法;12.复杂排列组合问题,采用构造模型法。

如何计算高中数学的排列组合问题
高中数学的排列组合问题是数学中的基础题目,通常出现在组合数学或概率论部分。解决这类问题的关键是理解排列和组合的定义,以及熟练掌握相关的公式。以下是一些解决排列组合问题的基本步骤:1. **确定问题类型**:- 如果问题涉及到元素的顺序,那么通常是排列问题。- 如果问题不关心元素的顺序,那么通常是...

在高中数学的排列组合当中,如何区分An和Cn?
排列组合问题,看是否与排列顺序有关,顺序有关则用全排列An,顺序无关则用Cn。An(m)相当于先选出m个,再对他们进行全排列,所以有 An(m)=Cn(m)·m!

高中数学排列组合常用解题方法
5、处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。6、在解决排列组合综合问题时...

高中数学排列组合问题
高中数学排列组合问题中插队问题详解,具体实例分析如下:首先,我们面对的是7名师生站成一排照相留念的情况。其中包含老师一人,男生四人,女生两人。四名男生身高不等,要求从高到低站队。站队问题分为几种情况讨论:第一种情况,四名男生站好后,空出5个位置供其他三人站。选择3人站这3个位置的方法有...

高中数学,高考常考的排列组合20种解题策略汇总!
首先,要了解基础概念。排列是有序的组合,组合则是无序的组合。掌握基本的排列公式与组合公式是解决问题的关键。例如,从n个不同元素中取出m个元素进行排列,公式为P(n,m)=n!\/(n-m)!;从n个不同元素中取出m个元素进行组合,公式为C(n,m)=n!\/(m!(n-m)!).其次,掌握分类讨论和分步计数...

相似回答