高等数学十大定理公式

如题所述

高等数学十大定理公式有有界性、 最值定理、零点定理、费马定理、 罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。

1、有界性

|f(x)|≤K

2、 最值定理

m≤f(x)≤M

3、 介值定理

若m≤μ≤M,∃ ξ∈[a,b],使f(ξ)=μ

4、零点定理

若 f(a)⋅f(b)<0∃ ξ∈(a,b) ,使f(ξ)=0

5、费马定理

设f(x)在x0处:1,可导 2,取极值,则f′(x0)=0

6、 罗尔定理

若f(x)在[a,b] 连续,在(a,b) 可导,且f(a)=f(b) ,则 ∃ ξ∈(a,b) ,使得f′(ξ)=0

7、拉格朗日中值定理

若f(x)在[a,b] 连续,在(a,b) 可导,则∃ ξ∈(a,b) ,使得 f(b)−f(a)=f′(ξ)(b−a)

8、柯西中值定理

若f(x)、g(x)在[a,b] 连续,在(a,b) 可导,且g′(x)≠0 ,则

∃ ξ∈(a,b) ,使得 f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)

9、泰勒定理(泰勒公式)

n阶带皮亚诺余项:条件为在$x_0$处n阶可导 

$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)\ ,x\xrightarrow{} x_0$

n阶带拉格朗日余项:条件为 n+1阶可导

$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\ ,x\xrightarrow{} x_0$

10、积分中值定理(平均值定理)

若 f(x)在 [a,b] 连续,则∃ ξ∈(a,b),使得 ∫baf(x)dx=f(ξ)(b−a)

温馨提示:内容为网友见解,仅供参考
无其他回答

高等数学十大定理公式
高等数学十大定理公式有有界性、 最值定理、零点定理、费马定理、 罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。1、有界性 |f(x)|≤K 2、 最值定理 m≤f(x)≤M 3、 介值定理 若m≤μ≤M,∃ ξ∈[a,b],使f(ξ)=μ 4、零点...

高等数学十大定理公式
高等数学十大定理公式包括:罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理、费马定理、洛必达法则、积分中值定理、微积分基本定理、斯托克斯公式和格林公式。罗尔定理:如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a,b),使得f'...

高等数学的基本定理有什么?
高等数学的基本定理有很多,以下是其中一些重要的定理:1.勾股定理:直角三角形的斜边的平方等于两直角边的平方和。2.中值定理:如果函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)内可导,则存在ξ∈(a,b),使得f'(ξ)=f(b)-f(a)\/(b-a)。3.拉格朗日中值定理:如果函数f(x)在闭区间...

高数里哪些公式
1、极限公式包括:极限的夹逼定理。2、微分公式涵盖:微分的基本公式,链式法则,乘积法则,商法则,导数的导数,隐函数导数。3、积分公式包括:定积分的基本公式,换元法,部份积分法,积分法,斯托克斯公式,格林公式,高斯公式。4、向量公式涉及:向量加法,减法,数量积,向量积。5、三角函数公式包括:...

常用的10个泰勒公式记忆口诀是什么?
在高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下 :(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。(2)应用泰勒公式可以证明区间上的函数等式或不等式。(3)应用泰勒公式可以进行更加精密的近似计算。(4)应用泰勒公式可以求解一些极限。(5)应用泰勒公式可以计算...

高等数学公式大全(几乎包含了所有)
高等数学公式大全 1、导数公式:2、基本积分表:3、三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:...

高等数学中的公式有哪些?
1.牛顿-莱布尼茨公式,又称为微积分基本公式 2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分 3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分 4.斯托克斯公式,与旋度有关 (2)微积分常用公式:Dx sin x=cos x cos x = -sin x tan ...

高数有哪些公式
高等数学涉及的公式广泛而深入,以下是其中一些关键公式,帮助学生理解和掌握。首先,极限的四个基本定理包括夹逼定理、洛必达法则、泰勒级数展开法,它们在解析和求解极限问题时十分重要。微分的基本规则和公式包括:dy\/dx = y',表示函数的导数;(dy\/dx)' = d(y')\/dx,描述了导数的链式规则;以及...

大一高等数学公式(精华整理的)
高等数学公式1导数公式:2基本积分表:3三角函数的有理式积分:4一些初等函数:5两个重要极限:6三角函数公式:·诱导公式:7·和差角公式:8·和差化积公式:9·倍角公式:10·半角公式:11·正弦定理:12·余弦定理:13·反三角函数性质:14高阶导数公式——莱布尼兹(Leibniz)公式:15中值定理与...

高等数学数学微积分公式和定理
�6�1半角公式:�6�1正弦定理: �6�1余弦定理:�6�1反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法...

相似回答
大家正在搜