数学人教版选修2-1知识点总结

如题所述

知识点总结
相似三角形的判定及有关性质
相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似。
判定定理1:两角对应相等,两三角形相似。
判定定理2:两边对应成比例且夹角相等,两三角形相似。
判定定理3:三边对应成比例,两三角形相似。
直角三角形相似的判定定理:斜边和一条直角边对应成比例,两直角三角形相似。
相似三角形的性质:
相似三角形对应角相等,对应边成比例
相似三角形具有传递性
相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比
相似三角形周长的比等于相似比
相似三角形面积比等于相似比的平方

直线和圆的位置关系
1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.
①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.
①d<R,直线和圆相交.②d=R,直线和圆相切.③d>R,直线和圆相离.
2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.
3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.
切线的性质
⑴圆心到切线的距离等于圆的半径;⑵过切点的半径垂直于切线;⑶经过圆心,与切线垂直的直线必经过切点;⑷经过切点,与切线垂直的直线必经过圆心;当一条直线满足(1)过圆心;(2)过切点;(3)垂直于切线三个性质中的两个时,第三个性质也满足.
切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线.
切线长定理
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.

圆锥曲线性质的探讨
一、圆锥曲线的定义
1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即。
3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<E<1< SPAN>时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
二、圆锥曲线的方程
1.椭圆: + =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2)
2.双曲线: - =1(a>0, b>0)或 - =1(a>0, b>0)(其中,c2=a2+b2)
3.抛物线:y2=±2px(p>0),x2=±2py(p>0)
三、圆锥曲线的性质
1.椭圆: + =1(a>b>0)
(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e= ∈(0,1)(5)准线:x=±
2.双曲线: - =1(a>0, b>0)(1)范围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e= ∈(1,+∞)(5)准线:x=± (6)渐近线:y=± x
3.抛物线:y2=2px(p>0)(1)范围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:( ,0)(4)离心率:e=1(5)准线:x=-

[例1] 如图△ABC中,∠C,∠B的平分线相交于O,过O作AO的垂线与边AB、AC分别交于D、E,求证:△BDO∽△BOC∽△OEC。

证明:易得AO平分∠BAC,AO⊥DE ∴ ∠ADO=∠AEO ∴ ∠BDO=∠CEO
又∠BDO=90°+ ∠BAC ∠BOC=180°- (∠ABC+∠ACB)
=90°+ ∠BAC∴ ∠BDO=∠BOC 又∠DBO=∠OBC
∴ △BDO∽△BOC 同理△ECO∽△OCB∴ △BDO∽△BOC∽△OEC
[例2] △ABE中,D、C为AB上两点,AC=AE, ,求证:EC平分∠DEB。
证明:∵ AE=AC ∴ 即 又∵∠A=∠A ∴ △EAD∽△BAE ∴ ∠1=∠B ∵ AE=AC
∴ ∠1+∠2=∠ACE 又∵∠3+∠B=∠ACE ∴ ∠2=∠3∴ EC平分∠DEB
[例3] 已知:D、E分别在△ABC的边AC和AB上,BD与CE交于F,其中AE=BE, , ,求 。
证明:取AD中点N,连结EN ∴ EN BD
∴ ∴
∵ ∴ × = ∵ = ∴ = = =11
[例4]如图,直角梯形ABCD中,∠A=∠B=90°,AD‖BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?
解:以AB为直径的圆与CD是相切关系 如图,过E作EF⊥CD,垂足为F.
∵∠A=∠B=90°,∴EA⊥AD,EB⊥BC,∵DE平分∠ADC,CE平分∠BCD,∴ .∴以AB为直径的圆的圆心为E,且 ,∴以AB为直径的圆与边CD相切.
[例5]已知:ΔABC内接于⊙O,过点A作直线EF.
⑴如图甲,AB为直径,要使得EF是⊙O的切线,还需添加的条件是(只需写出三种情况):
①________; ②_________;③_________. ⑵如图乙,AB为非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.
解:⑴①∠FAB=90°.②∠B=∠EAC.③∠BAE=90°.
⑵连结AO并延长交⊙O于D,连结CD. ∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°. ∵∠D=∠B,∠B=∠CAE,∴∠CAE+∠CAD=90°,即OA⊥EF. 又∵EF经过半径OA的外端A,∴EF为⊙O的切线.
[例6]如图所示,AB=AC,以AB为直径作⊙O,交BC于点D,交AC于点E,过点D作⊙O的切线DF,交AC于F,求证:(1)DF⊥AC,(2)FC=FE.
证明:(1)连结OD,AD.∵ DF为⊙O的切线,
∴ OD⊥DF(切线的性质定理).又∵ AB为⊙O的直径,∴ AD⊥BC.又∵ AB=AC,∴D为BC中点. ∵O为AB中点,∴ ∴ DF⊥AC.
(2)连结DE.则∠DEC=∠B(圆内接四边形的性质),又∵ AB=AC,∴∠B=∠C.
∴∠DEC=∠C,∴ DE=DC.又∵ DF⊥AC,∴ FC=EF(等腰三角形的性质)
[例7]如图:椭圆 + =1(a>b>0),F1为左焦点,A、B是两个顶点,P为椭圆上一点,PF1⊥x轴,且PO//AB,求椭圆的离心率e。
解:设椭圆的右焦点为F2,由第一定义:|PF1|+|PF2|=2a, ∵ PF1⊥x轴,∴ |PF1|2+|F1F2|2=|PF2|2, 即(|PF2|+|PF1|)(|PF2|-|PF1|)=4c2,
∴ |PF1|= 。∵ PO//AB,∴ ΔPF1O∽ΔBOA,
∴ = c=b a= c, ∴ e= = 。
[例8] 已知 、 是椭圆 ( )长轴的两个端点, 是与 垂直的弦.求直线 与 的交点M的轨迹方程.

解 如图,由已知 轴,可设 、 .设动点M( ).∵ ( ,0)、 ( ,0)∴ 方程为 方程为 把上面两个等式左、右分别相乘,可得: 而P ( )又在椭圆上, 即 ,变形为
即 ,代入,可得M点轨迹方程为: .
[例9] 已知椭圆 ,A(1,1),过A的直线 交椭圆于P、Q两点,若 ,求直线 的方程.
解:设P( , ),Q( , )∵ ,由定比分点公式得: ∵ P、Q在椭圆上 ∴
整理得 解得 或
∴ 直线PQ的方程为 或
温馨提示:内容为网友见解,仅供参考
第1个回答  2010-12-13
常用逻辑用语、空间向量与立体几何、圆锥曲线与方程。这么大的工程没加分的啊?那我也只能随便应付下啦,要全部说的花多少时间啊?自己学习刻苦点啦,只有自己总结的才是自己的,别人告诉你的还不是酒肉穿肠过,有味但没留下点实在的东西。本回答被提问者和网友采纳

高二数学选修2-1的总结
一共三章,第一章常用逻辑用语:四种命题,注意原命题与逆否命题为等价命题;充要条件,一般四种判断方法:定义法,集合法,等价命题法,传递法;连接词,且或否,注意否命题与命题的否定的区别;特称命题与全称命题。第二章圆锥曲线与方程:轨迹方程的求法,直接法,定义法,代入法,转移法,参数法等...

高中数学选修2-1知识总结
求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点 为起点的两个已知向量 、 为邻边作平行四边形 ,则以 起点的对角线 就是 与 的和,这种求向量和的方法,称为向量加法的平行四边形法则.求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点 ,作, ,则.24、实...

可以给我发一份高中数学选修2-1的知识点总结吗,643322420@qq.com...
高中数学选修2-1主要包含以下知识点:三角函数的概念和性质:正弦、余弦、正切、余切、正割、余割等三角函数的定义和基本性质,以及三角函数的图像、周期、奇偶性等。三角函数的运算:三角函数的加、减、乘、除法的运算方法和公式,如和差公式、倍角公式、半角公式等。三角函数的应用:三角函数在解决实际问...

高中数学选修21主要内容
在学习空间向量时,学生需要掌握向量的基本概念、向量的运算、向量的分解和合成等知识,并学会如何应用这些知识解决实际问题。除了圆锥曲线和空间向量外,选修2-1还包括一些其他的内容,如矩阵与变换、数列的极限与数学归纳法等。这些内容虽然不如圆锥曲线和空间向量那么重要,但也是数学学习中的重要知识点,...

高中数学选修2-1主要内容
人教A版选修2-1的主要内容是:第一章 常用逻辑用语 充分条件必要条件和或且非 第二章 圆锥曲线与方程 椭圆、双曲线、抛物线 第三章 空间向量与立体几何 用空间向量解决立体几何的平行、垂直、所成角的问题

高中数学选修2-1有什么内容?给个目录就好了
选修2-1 第一章 常用逻辑用语 1-1命题及其关系 1-2充分条件与必要条件 1-3简单的逻辑联结词 1-4全称量词与存在量词 小结 复习参考题 第二章 圆锥曲线与方程 2-1曲线与方程 2-2椭圆 探究与发现 为什么截口曲线是椭圆 信息技术应用 用《几何画板》探究点的轨迹:椭圆 2-3双曲线 探究与发现 2-...

高中数学选修2-1主要内容
综上所述,选修2-1的内容涵盖了逻辑命题、圆锥曲线和空间向量等多个方面,每部分都有其独特的学习重点和解题技巧。对于学生而言,不仅需要掌握这些知识点,还需要通过大量练习来提高解题速度和准确性。因此,学好选修2-1对于提高数学成绩至关重要。逻辑命题的题目往往看似简单,但需要考生具备扎实的逻辑基础...

求解决高二数学选修2-1中椭圆、双曲线、抛物物的中点弦问题的一般方法与...
中点弦问题用点差法.中点弦问题一般用点差法求直线斜率 以椭圆为例,椭圆方程x^2\/a^2+y^2\/b^2=1,(a>b>0)设直线l与椭圆交于a(x1,y1),b(x2,y2),中点n(x0,y0)x1^2\/a^2+y1^2\/b^2=1 x2^2\/a^2+y2^2\/b^2=1 两式相减 (x1+x2)(x2-x1)\/a^2+(y2+y1)(y2-y1)\/b...

数学教材解析选修2-1,41页知识点一,关于椭圆的第二定义,见补充
椭圆是圆锥曲线的一种, 如果你注意的话,课本上椭圆,双曲线,抛物线是在同一章里面讲的.一般来说, 圆锥曲线就包括这三种, 实际上还有另外的情形,分别是一个点, 圆,两条相交直线,一条直线.对于圆锥曲线的第二定义,最重要的部分是比例常数e, 根据e的范围来区分该轨迹的形状.即: 0<e<1为椭圆 e...

高二数学 选修2-1:
1 选项A、C:这两个选项属于一个类型,对于不等号而言,当两边同乘\/除以 负数的时候,会变号,所以 “ab>bc “ 和 “a>b" 不能互相推导 ,则错误;对于等号,ac=bc 当c=0 时 这个等式恒成立,所以无法推出a=b,但 a=b 可以推出ac=bc,即使c=0也成立,所以 a=b 是ac=bc 的充分条件...

相似回答