求∫dx\/((x^2+1)(x^2+x)不定积分
1\/(x^2+1)(x^2+x)=[(ax+b)\/(x^2+1)]+(c\/x)+[d\/(x+1)]右边通分对应项相等,即可得到:a=b=d=-1\/2,c=1.此时积分为:原式 =-(1\/2)∫(x+1)dx\/(x^2+1)+∫dx\/x-(1\/2)∫dx\/(x+1)=-(1\/2)∫xdx\/(x^2+1)-(1\/2)∫dx\/(1+x^2)-lnx-(1\/2)ln(x+1)...
求∫dx\/((x^2+1)(x^2+x)不定积分
∫dx\/((x^2+1)(x^2+x)dx= ∫[1\/x-(1\/2)\/(x+1)-(x\/2)\/(x²+1)-(1\/2)\/(x²+1)]dx =ln│x│-(1\/2)ln│x+1│-(1\/4)ln(x²+1)-(1\/2)arctanx+C
求∫dx\/((x^2+1)(x^2+x)不定积分
1\/(x^2+1)(x^2+x)=[(ax+b)\/(x^2+1)]+(c\/x)+[d\/(x+1)]右边通分对应项相等,即可得到:a=b=d=-1\/2,c=1.此时积分为:原式 =-(1\/2)∫(x+1)dx\/(x^2+1)+∫dx\/x-(1\/2)∫dx\/(x+1)=-(1\/2)∫xdx\/(x^2+1)-(1\/2)∫dx\/(1+x^2)-lnx-(1\/2)ln(x+1)...
∫dx\/((x^2+1)(x^2+x)
解:∫dx\/((x^2+1)(x^2+x)dx =∫[1\/x-(1\/2)\/(x+1)-(x\/2)\/(x²+1)-(1\/2)\/(x²+1)]dx =ln│x│-(1\/2)ln│x+1│-(1\/4)ln(x²+1)-(1\/2)arctanx+C 所以∫dx\/((x^2+1)(x^2+x)的不定积分是ln│x│-(1\/2)ln│x+1│-(1\/4)ln(x...
dx\/[(x^2+1)(x^2+x)]不定积分?
朋友,您好!此题非常简单,主要就是待定系数法做,详细过程如图rt所示,希望能帮到你解决问题
∫dx\/((x^2+1)(x^2+x+1))求不定积分
C = (2\/√3)arctan[(2x+1)\/√3] + C 原式= (√3\/2)∫sec²θ\/(3\/4*sec²θ)² dθ arccost +C =arccos(1\/x)+C 分母 x^2 * (1+x^2)^(1\/2) = t^(-2) * ( 1+1\/ t^2 )^(1\/2) = t^(-3)
求∫1\/(x^2+1)(x^2+x)dx的不定积分详细过程
先拆成三项,再求积分
求不定积分1\/(x^2+1)(x^2+x+1)dx
先拆成两项,然后用积分表里的公式 详情如图所示 关于公式的使用说明
求不定积分dx\/x(x^2+1)要详细过程谢了答案为lnx\/根号下1+x^2+C
简单分析一下,答案如图所示
∫1\/((x^2+x)(x^2+1)) dx ??
求不定积分∫[1\/(x²+x)(x²+1)) ]dx 解:原式=(1\/2)∫[1\/x-1\/2(x+1)-(x+1)\/2(x²+1)]dx =(1\/2)[∫(1\/x)dx-(1\/2)∫dx\/(x+1)-(1\/2)∫(x+1)dx\/(x²+1)]=(1\/2)[ln︱x︱-(1\/2)ln︱x+1︱]-(1\/4)[∫xdx\/(x²+1)+...