∫√(x²+1)/xdx

如题所述

第1个回答  2017-05-01
[x(1-x+x^2)]-(1/[x(1+x)] =(1/[(x-1/∫√[(1-x)/.;3)∫dx/6)∫dx^2/3)∫dx/3)∫xdx/6)∫dx/.=(2/|x| ]+C ∫dx/3)∫(1+x)dx/3)∫dx/[(1-sinu)(1+sinu)] =tanu-ln[|1+sinu|/.;2)^2+3/3)ln|x|+;[x^2(1-x+x^2)]+(1/(1+x)] dx/.;4]-(1/(1+x)]=(1-cosu)/3)∫xdx/3)∫(x-1)dx/.;(1-sinu)(1+sinu) =tanu-∫dsinu/.;(x^2(1-x+x^2)+;2)^2+3/. =(1/[(x-1)x^2]+;sinu 原式=∫(1-cosu)du/.;6)∫dx^2/[(x-1/(x-1)+(1/√3)-(1/[(x-1)(1-x+x^2]+(1/6)ln|x^2-x+1|+(1/6)∫dx^2/. =(1/[(1+x)(1-x+x^2)]=(1/x^2)-1 ] -ln[|1+√(1-x^2)|/(cosu)^2 =∫du/..;[(x-1)(x^2-x+1)]+(1/|x|] =(1/x+;3√3)arctan(2x/4]-(1/(x-1)-(1/3)∫dx/(cosu)^2-∫cosudu/[x(x-1)]+;(x^2-x+1)-(1/. =(1/.;|x| =(1/3)∫dx/3)ln|1+x|/|cosu|] +C =√[(1/√3-1/.. ;(1+x^3) =∫dx/6)ln|x^2-x+1|-(1/3)∫dx/x^2 x=cosu dx=sinu √[(1-x)/.;√3-1/.;3)ln[|1+x|/√3)-(1/. =(1/3√3)arctan(2x/

dx\/x√x²+1的不定积分
∫√(x²+1)\/xdx =∫√(tan²t+1)\/tantdtant =∫csctdtant =∫csct×(-sec²t)dt =-∫(sin²t\/sintcos²t+cos²t\/sintcos²t)dt =-∫sint\/cos²tdt-∫csctdt =∫1\/cos²tdcost-∫csctdt 后面就不用我说了吧,∫csctdt书上有...

dx\/x√x²+1的不定积分
∫√(x²+1)\/xdx =∫√(tan²t+1)\/tantdtant =∫csctdtant =∫csct×(-sec²t)dt =-∫(sin²t\/sintcos²t+cos²t\/sintcos²t)dt =-∫sint\/cos²tdt-∫csctdt =∫1\/cos²tdcost-∫csctdt 后面就不用我说了吧,∫csctdt书上有...

∫√(x²+1) dx的积分公式?
∫ √(x²+1) dx=(1\/2)x√(x²+1) + (1\/2)ln(√(x²+1)+x) + C。C为积分常数。解答过程如下:令x=tanu,则√(x²+1)=secu,dx=sec²udu =∫ sec³u du 下面计算 ∫sec³udu =∫ secudtanu =secutanu - ∫ tan²usecudu =s...

求∫1\/(√1+x²)dx。答案出乎我意料,我想要过程。
答案是ln[x+√(x²+1)]+C 具体步骤如下:设x=tant,则sint=x\/√(x²+1),dx=sec²tdt ∴原式=∫sec²tdt\/sect =∫costdt\/cos²t =∫d(sint)\/(1-sin²t)=(1\/2)∫[1\/(1+sint)+1\/(1-sint)]d(sint)=(1\/2)[ln(1+sint)-ln(1-sint)]+C...

(x平方+1)分之x的三次方,求不定积分
具体回答如下:∫ x³\/(x²+1) dx =∫ (x³+x-x)\/(x²+1) dx =∫ xdx - ∫ x\/(x²+1) dx =(1\/2)x² - (1\/2)∫ 1\/(x²+1) d(x²)=(1\/2)x² - (1\/2)ln(x²+1) + C 不定积分的性质:这表明G(x)与...

∫ln(x+√x²+1)dx
* d ln[x+√(x²+1)]显然d ln[x+√(x²+1)]= 1\/[x+√(x²+1)] * [1+2x\/2√(x²+1)]所以得到 原式 = x * ln[x+√(x²+1)] - ∫x \/√(x²+1) dx = x * ln[x+√(x²+1)] - √(x²+1) +C,C为常数 ...

1+x分之x²的不定积分怎么求
方法如下,请作参考:若有帮助,请采纳。

用换元法求∫(2,1)(根号x^2-1)\/x dx
解:令x=sect,则dx=sect·tant dt ∫(1→2)√(x²-1)\/xdx =∫(0→π\/3)tan²t dt =∫(0→π\/3)(sec²t-1)dt =(tant-t)|(0→π\/3)=tanπ\/3-π\/3 =√3-π\/3

大学数学,求
原式=(1\/2)∫arctanxdx²=(1\/2)x²arctanx-(1\/2)∫x²d(arctanx)=(1\/2)x²arctanx-(1\/2)∫[x²\/(1+x²)]dx=(1\/2)x²arctanx-(1\/2)∫[1-1\/(1+x²)]dx=(1\/2)[(x²-1)arctanx-x]+C 5)多次利用分部积分,令...

高数不定积分!
∫ dx\/(x³+1)= (1\/3)∫ dx\/(x+1) - (1\/6)∫ (2x-1)\/(x²-x+1) dx + (1\/2)∫ dx\/(x²-x+1)= (1\/3)ln|x+1| - (1\/6)∫d(x²-x+1)\/(x²-x+1) dx + (1\/2)∫ d(x-1\/2)\/[(x-1\/2)²+3\/4]= (1\/3)ln|x+1...

相似回答