解一元一次方程应用题的方法及步骤

我数学好差看见一元一次方程应用题就不知道从何下手 希望教一下 谢谢 再说一遍 是应用题

这个好像没有固定的解法,要具体问题具体分析,具体对待

1.
大多数情况下,直接设题目要求的值为x
也有些情况,直接设要求的值不好计算,通过设其他未知数来计算

2.
根据以前学过的关系式,来找出等量关系
例如:
路程=时间×速度
追击路程=速度差×时间
相遇路程=速度和×时间
总工作量=每个人的工作量×时间
顺水速度=静水速度+水速
逆水速度=净水速度-水速
甲乙相遇,则所用时间相同
等等。。。。

3.
根据设好的未知数和找到的等量关系来列方程

PS:这题实在不好回答,随便说说
总的来说,还是要仔细读题,多加练习

也给提供几个例题,共参考。。。

7.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?
解:设爸爸追上我们需要x小时
2x+2=6x
4x=2
x=0.5
一共行了1+0.5=1.5小时<1小时45分钟
所以爸爸能追上我们

8.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。出发地到目的地的距离是60公里。问:步行者在出发后经多少时间与回头接他们的汽车相遇
(汽车掉头的时间忽略不计)?
解:设步行者出发x小时后与汽车相遇
分析:
画个图看一下
步行者用的时间是x小时,行程为5x千米
汽车用的时间为x-1小时,行程为60(x-1)
步行者与汽车的行程之和,等于全程的2倍
列方程如下:
5x+60(x-1)=60×2
5x+60x-60=120
65x=180
x=36/13
答:步行者出发36/13小时后与汽车相遇

时钟问题:
10.在6点和7点间,时钟分针和时针重合?
做时钟问题,首先要搞明白时针与分针的速度
分针,60分钟转一圈,每分钟转动360÷60=6度
分针,12小时转一圈,每分钟转动360÷12÷60=0.5度
然后把时钟问题转化为路程问题
6点整的时候,时针与分针的夹角为180度
到两针重合,也就是分针要比时针多转动180度(这个就是追击的路程)
每分钟,分针比时针多转动:6-0.5=5.5度(这个就是速度差)
所需时间为:180÷5.5=360/11分钟
也就是说,6点过360/11分的时候,两针重合
用方程就是:
解:设6点过x分钟,两针重合
(6-0.5)x=180
5.5x=180
x=360/11

行船问题:
行船问题需要明白的是:
1)顺水(顺风)速度=静水(无风)速度+水速(风速)
2)逆水(逆风)速度=静水(无风)速度-水速(风速)

12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
解:设两码头之间的距离为x千米
分析:
顺水速度为每小时x/2千米
逆水速度为每小时x/3千米
等量关系:顺水速度-水速=逆水速度+水速(都等于静水速度)
x/2-3=x/3+3
同时乘6,得:
3x-18=2x+18
3x-2x=18+18
x=36
这题,你也可以设静水速度为每小时x千米
等量关系:往返的路程相等
3(x-3)=2(x+3)
3x-9=2x+6
3x-2x=6+9
x=15
顺水速度就是:15+3=18千米/小时
两码头距离为:18×2=36千米

13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
跟上题同类型,麻烦一点的就是时间转换
2小时50分钟=17/6小时
解:设两城距离为x千米
x/(17/6)-24=x/3+24
6/17*x-24=x/3+24
(6/17-1/3)x=24+24
1/51*x=48
x=48*51
x=2448

或者:
解:设无风时飞机速度为每小时x千米
(x+24)*17/6=(x-24)*3
17/6*x+68=3x-72
3x-17/6x=68+72
1/6x=140
x=140×6
x=840
逆风速度:840-24=816千米/小时
两城距离:816×3=2448千米
温馨提示:内容为网友见解,仅供参考
第1个回答  2010-12-11
列方程(组)解应用题
一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
第2个回答  2020-02-25
列方程解应用题的关键是:仔细审题,找出能正确表达整个题数量关系的一个相等关系,再设未知数,并将这个相等关系用含未知数的式子表示出来。
主要是找数量关系的一个相等关系,你主要是多做题,就会提高你的解题水平
例1.
某商场将彩电先按原售价提高30%,然后再在广告中写上“大酬宾、八折优惠”,结果每台彩电比原售价多赚了112元,求每台彩电的原价应是多少元?
分析
相等关系是:实际售出价-原售价=112(元)。

设每台彩电的原售价为x元,根据题意,得:
.
解得:x=2800
答:每台彩电的原售价是2800元。
例2.
为了鼓励居民用电,某市电力公司规定了如下的计费方法:每月用电不超过100度,按每度0.5元计算;每月用电超过100度,超出部分按每度0.4元计算。
(1)若某用户2006年7月份交电费72元,那么该用户7月份用电多少度?
(2)若某用户2006年8月平均每度电费0.45元,那么该用户8月份用电多少度?应交电费多少元?
分析:
(1)由计费方法判断7月份交电费72元时,用电量超过100度;(2)由0.5元>0.45元>0.40元知,该用户8月份用电超过100度。
解(1)100度的电费为0.5×100=50(元)。
因为72>50,所以该用户7月份的用电量超过了100度。设超出x度,则0.4x=72-50,x=55.
故该用户7月份共用电100+55=155(度)。
(2)设该用户8月份用电x度,则应交电费为0.45x元。因为8月份平均每度电费0.45元
<0.50元,所以8月份的用电量超过100度。根据题意,得0.5×100+0.4(x-100)=0.45x.
解得:x=200.则0.45x=0.45×200=90(元)。
答:该用户7月份用电155度,8月份用电200度,应交电费90元。
练习
育英中学七年级(2)班决定派小聪、小明两人选购圆珠笔、钢笔共22支,捐给结对的山区某学校同学,他们去了商场,看到圆珠笔每支5元,钢笔每支6元。
(1)若他俩购买两类笔刚好用去120元,问钢笔、圆珠笔各买多少支?
(2)若圆珠笔9折优惠,钢笔8折优惠,在所需费用不超过100元的前提下,请你设计出一种选购方案。
(参考答案:(1)圆珠笔12支,钢笔10支;(2)答案不惟一,如圆珠笔18支,钢笔4支;圆珠笔19支,钢笔3支等。)
第3个回答  2010-12-11
1. 设未知数。一般将问题中的量设为未知数;
2. 根据题目列方程,即找相等关系列等式;
3. 解方程。
第4个回答  2010-12-11
2x+5=9
解:移项得:2X=9-5
化简得:2X=4
得 :X=2本回答被提问者采纳

一元一次方程解法步骤
解应用题步骤:1. 审题:仔细理解题意。2. 分析:找出已知和未知变量。3. 找关系:确定合适的等量关系。4. 设未知数:选择恰当的变量表示。5. 列方程:根据关系建立方程式。6. 解方程:执行解题步骤。7. 检验答案:确保解的正确性。8. 作答:清晰表达解题结果。特殊情况处理:如ax=0,考虑a=0...

用一元一次方程解决实际问题的一般步骤是什么?
解应用题的一般步骤:解应用题的一般步骤可以归结为:“审、设、列、解、验、答” .1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及...

一元一次方程应用题解题方法和技巧
一元一次方程应用题解题方法和技巧如下:方法:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长,公率...”来体现。②多少关系:通过关键词语“多、少、和、差、不足、剩余??”来体现。③基本数量关系:增长量=原有量×增长率,现在量=原有量+...

一元一次方程的解题方法和技巧?
(1)审题:弄清题意。(2)找出等量关系:找出能够表示本题含义的相等关系。(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程。(4)解方程:解所列的方程,求出未知数的值。(5)检验,写答案:检验所求出的未知数的值是否是方程的解,...

初一一元一次方程应用题该咋解啊?
解应用题的关键在于仔细审题,找出题中数量关系的相等关系,然后设未知数,将相等关系用含未知数的式子表示出来。例1:某商场将彩电先按原售价提高30%,然后再在广告中写上“大酬宾、八折优惠”,结果每台彩电比原售价多赚了112元,求每台彩电的原价应是多少元?分析:相等关系是:实际售出价 - 原...

利用一元一次方程解应用题的一般步骤有哪些?
在解决实际问题时,一元一次方程的运用非常广泛。对于一元一次方程解应用题,其一般步骤如下:首先,根据题目要求,设出合适的未知数。这一步是基础,未知数的选择应与问题紧密相关,能够代表题目中的特定量。接着,根据题目实际情况,找出等量关系。这一步的关键在于理解题意,将文字描述转化为数学语言,...

一元一次方程详细过程
一元一次方程解法的基本步骤如下:1、去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数;2、去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号;3、移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边;4、合并...

初一不会解一元一次方程应用题该怎么办
一元一次方程应用题步骤解题技巧 一概述 列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易...

解一元一次方程的步骤是什么??
(1)找出实际问题的不等关系,设定未知数,列出不等式(组);(2)解不等式(组);(3)从不等式组的解集中求出符合题意的答案。、一元一次方程的解法及其解的三种情况:(1)解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和将未知数的系数化为1;(2)最简一元一次方程ax=b...

解一元一次方程应用题的方法与技巧
解一元一次方程应用题的方法与技巧如下:方法:审题,设未知数(直接设元和间接设元);找等量关系,列方程;解方程;检验,方程的解要符合实际要求;答,作答。技巧:列一元一次方程解决实际问题的关键是审题,审题时抓住表示量与量之间关系的重点词句,正确找出等量关系列方程。找等量关系的常用方法 1...

相似回答