xy'+y=y(lny+lnx)求通解,详细点
xy'+y=y(lny+lnx)xu'e^u+e^u=e^u(u+lnx)u'-u\/x=(lnx-1)\/x 为一阶线性微分方程,根据公式 u=Ce^∫dx\/x)*[1+∫(lnx-1)\/x*e^(-∫dx\/x)*dx]=Cx[1+∫(lnx-1)\/x*1\/x)dx]∫(lnx-1)\/x*1\/x)dx=∫lnx\/x^2*dx-∫dx\/x^2=-∫lnx\/*d(1\/x)+1\/x =-lnx\/x+...
xy'+y=y(lny+lnx)求通解,
简单计算一下即可,答案如图所示
求微分方程的通解
详情请查看视频回答
求微分方程的通解 求方程xy'+y=y(lnx+lny)的通解
求方程xy'+y=y(lnx+lny)的通解 xy'+y=yln(xy);令xy=u,则y=u\/x.(1),y'=dy\/dx=[x(du\/dx)-u]\/x²,代入原式得:[x(du\/dx)-u]\/x+u\/x=(u\/x)lnu,化简得du\/dx=(u\/x)lnu,分离变量得du\/(ulnu)=(1\/x)dx;积分之得∫du\/(ulnu)=∫(1\/x)dx 即有lnlnu=lnx+ln...
适当变换求通解
解:∵xy'+y=y(lnx+lny)==>(xy)'=yln(xy)==>d(xy)\/dx=(xy)ln(xy)\/x ==>d(xy)((xy)ln(xy))=dx\/x ==>d(ln(xy))\/ln(xy)=dx\/x ==>∫d(ln(xy))\/ln(xy)=∫dx\/x ==>ln│ln(xy)│=ln│x│+ln│C│ (C是非零常数)==>ln(xy)=Cx ==>lny+lnx=...
xy'+y=y(lnx+lny)求通解
==>ln│lnt│=ln│x│+ln│C1│ (C1是积分常数)==>lnt=C1x ==>t=e^(C1x)==>xy=C^x (C=e^C1,也是积分常数)故原方程的通解是xy=C^x (C是积分常数)。也可以这样解决 xy'+y=y(lnx+lny)(xy)'=yln(xy)lnxy=u xy=e^u (xy)'=u'e^u=ue^u\/x u'=u\/x du\/...
求xy'+y=y(lnxy+lny)的通解
令xy=u;=> u'=u\/x (2lnu-lnx);令 v=lnu;=> v'=2v\/x-lnx\/x;令 v=C(x)x^2;=> C'(x)x^2=-lnx\/x;C'(x)=-lnx \/x^3;C(x)=C+1\/x^2 *(1\/4+1\/2 *Ln[x])==>y=D\/x*Exp[1\/x^2*(1\/4+1\/2*Ln[x])];D is constant ...
...化为可分离变量方程,求通解,xy'+y=y(lnx+lny);过程详细点...
设xy=t,则y=t\/x dy=d(t\/x)=(1\/x)dt+(-t\/x^2)dx xy'+y=y(lnx+lny)xdy+ydx=y(lnx+lny)dx dt+-(t\/x)dx+(t\/x)dx=(t\/x)(lnx+lnt-lnx)dx dt=(t\/x)lntdx 1\/(t*lnt )dt=(1\/x )dx 注:[ln(lnt)]'=1\/(t*lnt)两边同时积分得 ln(lnt)=lnx+C 得ln(lnx+...
...可分离变量的微分方程,然后求出通解: ⑴xy'+y=y(lnx+ln
1、方程写作(xy)'=xyln(xy)\/x,令u=xy,微分方程化为du\/dx=ulnu\/x,分量变量du\/(ulnu)=dx\/x,两边积分ln(lnu)=lnx+lnC,所以lnu=Cx,原方程的通解是lnx+lny=Cx。2、方程写作y'+cosx=(y+sinx-1)^2,令u=y+sinx-1,微分方程化作du\/dx=u^2,分量变量du\/u^2=dx,两边积分-1\/...
x*(dy\/dx)+y=y(lnx+lny)求通解
∵x*(dy\/dx)+y=y(lnx+lny) ==>d(xy)\/dx=yln(xy) ==>d(xy)\/dx=(xy)ln(xy)\/x ==>d(xy)\/((xy)ln(xy))=dx\/x ==>d(ln(xy))\/(ln(xy))=dx\/x 展开 作业帮用户 2017-10-31 举报