如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D .
(1)求抛物线的解析式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同
时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2)
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取5/4 时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

(1)解:设抛物线的解析式是y=ax2+bx+c,
当x=0时,y=-2,
∴点A的坐标是(0,-2),
∵正方形的边长2,
∴B的坐标(2,-2),把A(0,-2),B(2,-2),D(4,- )代入得:
且 ,
解得a= ,b=- ,c=-2
∴抛物线的解析式为: ,
答:抛物线的解析式为: .

(2)解:①由图象知:PB=2-2t,BQ=t,
∴S=PQ2=PB2+BQ2,
=(2-2t)2+t2,
即S=5t2-8t+4(0≤t≤1).
答:S与运动时间t之间的函数关系式是S=5t2-8t+4,t的取值范围是0≤t≤1.
②解:假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
∵S=5t2-8t+4(0≤t≤1),
∴当S= 时,5t2-8t+4= ,得20t2-32t+11=0,
解得t= ,t= (不合题意,舍去),
此时点P的坐标为(1,-2),Q点的坐标为(2,- )
若R点存在,分情况讨论:
【A】假设R在BQ的右边,这时QR=PB,RQ∥PB,则R的横坐标为3,R的纵坐标为- ,
即R(3,- ),
代入 ,左右两边相等,
∴这时存在R(3,- )满足题意;
【B】假设R在BQ的左边,这时PR=QB,PR∥QB,
则:R的横坐标为1,纵坐标为- ,
即(1,- ),
代入 ,左右两边不相等,R不在抛物线上;
【C】假设R在PB的下方,这时PR=QB,PR∥QB,则:R(1,- )代入,
左右不相等,
∴R不在抛物线上.(1分)
综上所述,存点一点R(3,- )满足题意.
答:存在,R点的坐标是(3,- ).

(3)解:如图,M′B=M′A,
∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
设直线BD的解析式是y=kx+b,把B、D的坐标代入得: ,
解得:k= ,b=- ,
∴y= x- ,
抛物线 的对称轴是x=1,
把x=1代入得:y=-
∴M的坐标为(1,- );
答:M的坐标为(1,- ).
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-05-05
解:
(1)据题意知:抛物线y=ax2+bx+c经过点A(0,-2),点B(2,-2),点D(4,-2/3)
代入解得 a=1/6 b=-1/3 c=-2
∴抛物线的解析式为:y=(1/6)x ² -(1/3)x-2

(2)①由图象知:PB=2-2t,BQ=t,
∴S=PQ² =PB² +BQ² =(2-2t)² +t²
即S=5t² -8t+4(0≤t≤1)
②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
∵S=5t² -8t+4(0≤t≤1)
∴当S=5/4时,5t² -8t+4=5/4
得20t²-32t+11=0,
解得t=1/2,t=11/10(不合题意,舍去),
此时点P的坐标为(1,-2),Q点的坐标为(2,-3/2);

若R点存在,分情况讨论:
[A]假设R在BQ的右边,这时QR=∥PB,则,R的横坐标为3,R的纵坐标为-3/2
即R(3,-3/2),代入y=(1/6)x ² -(1/3)x-2 左右两边相等
∴这时存在R(3,-3/2)满足题意.
[B]假设R在BQ的左边,这时PR=∥QB,则:R的横坐标为1,纵坐标为-3/2,
即(1,-3/2)代入y=(1/6)x ² -(1/3)x-2 左右两边不相等
∴R不在抛物线上.
[C]假设R在PB的下方,这时PR=∥QB,则:R(1,-5/2)
代入,y=(1/6)x ² -(1/3)x-2 左右不相等
∴R不在抛物线上.
综上所述,存点一点R(3,-3/2)满足题意.

(3)延长DB交对称轴与点M
设直线BD的解析式是y=kx+b,把B、D的坐标代入
得 y=(2/3)x -10/3
把x=1代入
y= - 8/3
∴M的坐标为(1,-8/3 )
第2个回答  2013-01-06
解:(1)据题意知:抛物线y=ax2+bx+c经过点A(0,-2),点B(2,-2),
而且6a-3b=2

c=-24a+2b+c=-26a-3b=2

解得
a=16b=-13c=-2

∴抛物线的解析式为:y=
1
6
x2-
1
3
x-2;
(2)①由图象知:PB=2-2t,BQ=t,
则S=PQ2=PB2+BQ2=(2-2t)2+t2,
即S=5t2-8t+4(0≤t≤1),
②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
∵S=5t2-8t+4(0≤t≤1),
∴当S=
5
4
时,5t2-8t+4=
5
4

得20t2-32t+11=0,
解得t=
1
2
,t=
11
10
(不合题意,舍去),
此时点P的坐标为(1,-2),Q点的坐标为(2,-
3
2
);
若R点存在,分情况讨论:
[A]假设R在BQ的右边,这时QR

.
PB,则,R的横坐标为3,R的纵坐标为-
3
2
即R(3,-
3
2
),代入y=
1
6
x2-
1
3
x-2,左右两边相等,
∴这时存在R(3,-
3
2
)满足题意.
[B]假设R在BQ的左边,这时PR

.
QB,则:R的横坐标为1,纵坐标为-
5
2

即(1,-
5
2
),代入y=
1
6
x2-
1
3
x-2,左右两边不相等,R不在抛物线上.
[C]假设R在PB的下方,这时PR

.
QB,则:R(1,-
5
2
)代入,y=
1
6
x2-
1
3
x-2,
左右不相等,
∴R不在抛物线上.
综上所述,存在一点R(3,-
3
2 )满足题意.
第3个回答  2012-05-13
解:(1)A(0,-2)B(2,-2)C(2,0)
因为抛物线过A、B、D
所以可列方程组c=-2
4a+2b+c=-2
16a+4b+c=-2/3
解得a=-1/3
b=2/3
c=-2
所以抛物线为y=-1/3x^2+2/3x-2
(2)①因为P从A到B,所以0≤t≤1
PB=2-2t,QB=t
所以PQ=根号下((2-2t)^2+t^2)
所以S=5t^2-8t+4
②S=5(t-4/5)^2+4/5
所以t=4/5时S最小,为4/5
此时P(8/5,-2)Q(2,-6/5)
若PB与QR平行
则R在直线y=-6/5上,且QR=PB=2/5
所以R(8/5,-6/5)或(12/5,-6/5)
若QB与PR平行,PQ与BR平行
则R在直线x=8/5上,且PR=4/5
所以R(8/5,-14/5)
综上,R(8/5,-6/5)或(12/5,-6/5)或(8/5,-14/5)
第4个回答  2011-06-06
请问第一小问里面的D点是哪来的???
还是你的正方形是ABCD而不是OABC???

...正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上...
∵正方形的边长2,∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),把A(0,﹣2),

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C...
此时点P的坐标为(1,-2),Q点的坐标为(2,-32);若R点存在,分情况讨论:[A]假设R在BQ的右边,这时QR∥.

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C...
(1)∵正方形OABC的边长为2cm,∴点A(0,-2),B(2,-2),∴c=?256×4+2b+c=?2,解得b=?53c=?2,∴抛物线的表达式为y=56x2-53x-2;(2)移动t秒时,AP=2t,BP=2-2t,BQ=t,①(i)OA与BP是对应边时,∵以O、A、P为顶点的三角形与△BPQ相似,∴OABP=APBQ,即22?

...正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上...
所以可列方程组c=-2 4a+2b+c=-2 16a+4b+c=-2\/3 解得a=-1\/3 b=2\/3 c=-2 所以抛物线为y=-1\/3x^2+2\/3x-2 (2)①因为P从A到B,所以0≤t≤1 PB=2-2t,QB=t 所以PQ=根号下((2-2t)^2+t^2)所以S=5t^2-8t+4 ②S=5(t-4\/5)^2+4\/5 所以t=4\/5时S最小,...

如图在平面直角坐标系xoy中,正方形OABC的边长为2厘米,点A、C分别在y...
(1)由题意知,A(0,-2)B(2,-2)而D(4,-2\/3),知道三点求抛物线你应该会求吧?并且这条抛物线是以x=1为对称轴的开口向上。(2)第二题也很简单啊,知道PQ运动的时间相应就知道PQ的坐标了啊,你把PQ的平方用t的式子表示出来啊,算出函数式后求最小值也很简单啊,t的范围就是0<...

...平面直角坐标系x0y中,正方形OABC的边长为2cm,点A C分别在y轴的负半...
∴点A的坐标是(0,-2),∵正方形的边长2,∴B的坐标(2,-2),把A(0,-2),B(2,-2),D(4,- )代入得:且 ,解得a= ,b=- ,c=-2 ∴抛物线的解析式为: ,答:抛物线的解析式为: .(2)解:①由图象知:PB=2-2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2-2t)2+t2...

2011年甘肃省兰州市中考数学第28题解答全一点的
28、(2011•兰州)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D .(1)求抛物线的解析式.(2)如果点P由点A出发沿AB边以2cm\/s的速度向点B运动,同 时点Q由点B出发沿BC边以1cm\/s的速度...

求初中数学较难的压轴题(选择或填空题的压轴题也得,越难越好)。
例2:(2012辽宁朝阳14分)已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0)。(1)求点C的坐标;(2)求过A、B、C三点的抛物线的解析式和对称轴;(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最...

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x...
∵正方形OABC的边长为2,∴B(2,2),C(0,2),把B(2,2),C(0,2)代入y=- x 2 +bx+c得 ,解得 ;(2)二次函数解析式为y=- x 2 + x+2,当y=0时,- x 2 + x+2=0,解得x 1 =-1,x 2 =3,∴抛物线与x轴的交点坐标为(-1,0),(3,0)...

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x...
分析:(1)根据正方形的性质得出点B、C的坐标,然后利用待定系数法求函数解析式解答;(2)令y=0求出二次函数图象与x轴的交点坐标,再根据y>0,二次函数图象在x轴的上方写出c的取值范围即可.

相似回答