条件概率中P(AB)与P(B|A)的区别

如题所述

两者的区别就在于其定义:

P(AB)是AB同时发生的概率,是以全体事件为100%来计算其中AB同时发生的概率。

P(B|A)是在已经发生了A事件的前提下,再发生B事件的概率。是以所有发生A事件为100%来计算AB同时发生的概率。

扩展资料

定理1

设A,B 是两个事件,且A不是不可能事件,则称

 

为在事件A发生的条件下,事件B发生的条件概率。一般地,

 

,且它满足以下三条件:

(1)非负性;(2)规范性;(3)可列可加性。

定理2

设E 为随机试验,Ω 为样本空间,A,B 为任意两个事件,设P(A)>0,称

 

为在“事件A 发生”的条件下事件B 的条件概率。

上述乘法公式可推广到任意有穷多个事件时的情况。

 ,  ,…  为任意n 个事件(n≥2)且

 ,则 

定理3(全概率公式)

定义:(完备事件组/样本空间的划分)

设B1,B2,…Bn是一组事件,若

(1)

(2)B1∪B2∪…∪Bn=Ω

则称B1,B2,…Bn样本空间Ω的一个划分,或称为样本空间Ω 的一个完备事件组。

定理(全概率公式):

设事件组  是样本空间Ω 的一个划分,且P(Bi)>0(i=1,2,…n)

则对任一事件B,有 

参考资料来源:百度百科—条件概率

温馨提示:内容为网友见解,仅供参考
第1个回答  2021-05-24

两者的区别就在于其定义:

P(AB)是AB同时发生的概率,是以全体事件为100%来计算其中AB同时发生的概率。

P(B|A)是在已经发生了A事件的前提下,再发生B事件的概率。是以所有发生A事件为100%来计算AB同时发生的概率。

边缘概率

是某个事件发生的概率,而与其它事件无关。边缘概率是这样得到的:

在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。

需要注意的是,在这些定义中A与B之间不一定有因果或者时间顺序关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。

本回答被网友采纳
第2个回答  2011-06-02
P(AB)是求事件A、B同时发生的概率;而P(B|A)是求在知道A发生的条件下B发生的概率,也就是把样本空间缩到事件A中求B得概率。
第3个回答  推荐于2016-12-01
概率中一切运算符号都不是数学运算,都是概率意义负号
乘是交,加是并,减是不发生
P(AB)为A和B的交
P(B|A)是条件概率,在A发生的情况下发生B
这时的全集是A,计算在全集A内的B的概率本回答被提问者采纳
第4个回答  2018-08-04
1、事件A在另外一个事件B已经发生条件下的发生概率,此时用条件概率P(A|B)。
2、事件A与事件B同时发生,此时用同时发生概率P(AB)。
3、设A,B 是两个事件,且A不是不可能事件,则称P(A|B)为在事件A发生的条件下,事件B发生的条件概率。它满足以下三条件:
(1)非负性;(2)规范性;(3)可列可加性。
4、设A、B是两个事件,那么P(AB)表示A与B同时发生的概率。两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。本回答被网友采纳
相似回答