微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。
例如:
其解为:
其中C是待定常数;
如果知道
则可推出C=1,而可知 y=-\cos x+1。
一阶线性常微分方程
对于一阶线性常微分方程,常用的方法是常数变易法:
对于方程:y'+p(x)y+q(x)=0,可知其通解:
然后将这个通解代回到原式中,即可求出C(x)的值。
二阶常系数齐次常微分方程
对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解
对于方程:
可知其通解:
其特征方程:
根据其特征方程,判断根的分布情况,然后得到方程的通解
一般的通解形式为:
若
则有
若
则有
在共轭复数根的情况下:
r=α±βi
扩展资料
一阶微分方程的普遍形式
一般形式:F(x,y,y')=0
标准形式:y'=f(x,y)
主要的一阶微分方程的具体形式
约束条件
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
唯一性
存在性是指给定一微分方程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。
针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理 [4] 则可以判别解的存在性及唯一性。
针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。
参考资料来源:百度百科-常微分方程
参考资料来源:百度百科-微分方程
常微分方程解的形式是怎样的?
微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。例如:其解为:其中C是待定常数;如果知道 则可推出C=1,而可知 y=-\\cos x+1。一阶线性常微分方程 对于一阶线性常微分方程,常用的方法是常数变易法:对于方程:y'+p(x)y+q(x)=0,可知其通解:然后...
常微分方程的通解是什么形式的?
常微分方程通解公式是y=y(x)。隐式通解一般为f(x,y)=0的形式,定解条件,就是边界条件,或者初始条件 。 常微分方程,属数学概念。学过中学数学的人对于方程是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。六种常见的...
常微分方程通解公式
微分方程的解通常以函数形式y=f(x)呈现,此函数表达式中可能含有一个或多个待定常数,这些常数需通过特定的初始条件来确定。在研究常微分方程时,我们首先需要理解其基本概念和定义,这包括微分方程的阶数、线性性以及齐次性等。在解决常微分方程的过程中,我们通常会采用一系列方法和技巧,如分离变量法、...
怎样求常微分方程的解?
微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。例如:dy\/dx=sin x,其解为: y=-cos x+C,其中C是待定常数;如果知道y=f(π)=2,则可推出C=1,而可知 y=-\\cos x+1。一阶线性常微分方程 对于一阶线性常微分方程,常用的方法是常数变易法:对于...
常微分方程的特解有哪些形式?
常微分方程的特解形式如下:1. 对于方程 Ay'' + By' + Cy = e^mx,特解形式为 y = C(x)e^mx。2. 对于方程 Ay'' + By' + Cy = a sinx + b cosx,特解形式为 y = msinx + n cosx。3. 对于方程 Ay'' + By' + Cy = mx + n,特解形式为 y = ax。通解形式包括:1...
常微分方程解法
1、分离变量法:这是求解常微分方程中常用的一种方法。它的基本思想是将方程中的变量分离,将含有未知函数的项移到方程的一侧,含有自变量的项移到方程的另一侧,然后对两边同时积分,从而得到最终的解析解。2、常系数线性齐次微分方程:这类方程具有形如dy\/dx+ay=0的标准形式,其中a为常数。这类方程...
常微分方程怎么解?
计算过程如下:dx\/x=dy\/y 总之是可以把x和y分开并且x与ds放到一边,y与dy放到等号另一边。这种微分方程是可以直接积分求解的,∫dx\/x = ∫dy\/y => ln|x| = ln|y| + lnC,C是任意常数。永远要知道的是,微分方程有多少阶,就有多少个任意常数。一阶微分方程只有一个任意常数C。
常微分方程的解有哪些类型?
二阶常系数齐次线性方程的形式为: y "+ py + qy =0其中 p , q 为常数,其特征方程为入^2+ p 入+ q =0依据判别式的符号,其通解有三种形式:1、 A = p ^2-4q>0,特征方程有两个相异实根入1,入2,通解的形式为 y ( x )=C1*( e ^(A1* x )]+C2*( e ^(A2* x )]...
常微分方程的特解有哪些形式?
1、Ay''+By'+Cy=e^mx 特解 y=C(x)e^mx 2、Ay''+By'+Cy=a sinx + bcosx 特解 y=msinx+nsinx 3、Ay''+By'+Cy= mx+n 特解 y=ax 通解 1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)2、两根相等的实根:y=(C1+C2x)e^(r1x)3、一对共轭复根:r1=α+iβ,r...
常微分方程常见形式及解法
高阶常微分方程的一般形式是y^(n)(t)=f(t,y,y',...,y^(n-1)),其中f(t,y,y',...,y^(n-1))是关于t,y,y',...,y^(n-1)的函数。对于这种形式的方程,可以使用递推法或变量代换法求解。考虑以下三阶常微分方程:y'''(t)=y''(t)+y'(t)+y(...