1、在1到200的所有整数中,能且只能被2、3、5之一整除的数有多少个?
2、设树T有5片树叶,4个2度结点,其余都是3度结点,求3度结点的个数。
3、证明:对任意集合A、B、C有A-(B∪C)=(A-B)∩(A-C)
4、设a,b,c,d是格<L,∨,∧>的任意四个元素,证明:
(a∧b)∨(c∧d)《(a∨c)∧(b∨d)。
5、证明:((Q∧R)→S)∧(R→(P∨S)<=>(P→Q)→(R→S),其中P、Q、R、S为命题公式。
第5题中间那个符号不会打。。。童鞋们懂的,麻烦了。
这两天尽量去弄分,能弄多少就多少追加。
大哥。。送佛送到西吧。。。还有2题。
追答吃饭去了。
【第四题】证明:
∵ a∧b是a,b的最大下界,a∨c是a,c的最小上界,
∴ a∧b《a , a《a∨c
再由关系《的传递性 得a∧b《 a∨c
同理,
∵ c∧d是c,d的最大下界,a∨c是a,c的最小上界,
∴ c∧d《 c , c《 a∨c
再由关系《 的传递性得c∧d 《 a∨c
由a∧b《a∨c,c∧d《a∨c 可知
a∨c是a∧b,c∧d的上界,而(a∧b)∨(c∧d)是a∧b,c∧d的最小上界,
∴(a∧b)∨(c∧d)《 a∨c。
同理,
∵ (a∧b)∨(c∧d)是a∨c,b∨d的下界,而(a∨c)∧(b∨d)是a∨c,b∨d的最大下界,
∴(a∧b)∨(c∧d)《(a∨c)∧(b∨d)。
(注:《代表关系左边:
((Q∧R)→S)∧(R→(P∨S))
=>(7(Q∧R)∨S)∧(7R∨(P∨S)) (去掉蕴含符)
=>(7Q∨7R∨S)∧(7R∨P∨S)
右边:
(P→Q)→(R→S)
=>(7P∨Q)→(7R∨S) (去掉蕴含符)
=>7(7P∨Q)∨(7R∨S) (去掉蕴含符)
=>(P∧7Q)∨(7R∨S)
=>(P∨7R∨S)∧(7Q∨7R∨S)
左边等于右边,得证。
(注:其中7代表“非”)
达人啊,给我膜拜一下,先不采纳,这几天都在刷分,刷好采纳给你。