数学集合符号如下:
1、N:非负整数集合或自然数集合{0,1,2,3,…}
2、N*或N+:正整数集合{1,2,3,…}
3、Z:整数集合{…,-1,0,1,…}
4、Q:有理数集合
5、Q+:正有理数集合
6、Q-:负有理数集合
7、R:实数集合(包括有理数和无理数)
8、R+:正实数集合
9、R-:负实数集合
10、C:复数集合
11、∅ :空集(不含有任何元素的集合)
集合基础知识:
1、定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集;
2、表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3、关于集合的元素的特征
(1)确定性:给定一个集合,那么任何一个元素在或不在这个集合中就确定了;
(2)互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的;
(3)无序性:即集合中的元素无顺序,可以任意排列、调换。
4、元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)
(1)若a是集合A中的元素,则称a属于集合A;
(2)若a不是集合A的元素,则称a不属于集合A。
5、集合的表示方法
(1)列举法:把集合中的元素一一列举出来, 并用花括号括起来表示集合的方法叫列举法;
(2)描述法:用集合所含元素的共同特征表示集合的方法,称为描述法;
(3)文氏(Venn)图法:画一条封闭的曲线,用它的内部来表示一个集合。
数学集合符号都有:N、N+、Z、Q、R、C等。具体介绍如下:
1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N。
2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)。
3、全体整数的集合通常称作整数集,记作Z。
4、全体有理数的集合通常简称有理数集,记作Q。
5、全体实数的集合通常简称实数集,记作R。
6、复数集合计作C。
扩展资料:
1、集合,是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。
2、元素与集合的关系有:“属于”与“不属于”两种。
3、集合的运算:
(1)集合交换律:A∩B=B∩A;A∪B=B∪A。
(2)集合结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
参考资料:百度百科_数学集合
本回答被网友采纳