1.求通项公式为an=(2n+1)/{n(n+1)(n+2)}的数列前n项和Sn
2.数列{an}满足an=a(n-3),a1=1,a2=3,a3=5,求Sn
两道题目 谢谢谢谢。
...2.数列{an}满足an=a(n-3),a1=1,a2=3,a3=5,求Sn
a(n)=(2n+1)\/{n(n+1)(n+2)}=2\/[(n+1)(n+2)] + 1\/[n(n+1)(n+2)]=2\/(n+1) - 2\/(n+2) + (1\/2)\/[n(n+1)] - (1\/2)\/[(n+1)(n+2)],s(n)=2[1\/2-1\/3 + 1\/3-1\/4 + ... + 1\/(n+1)-1\/(n+2)] +(1\/2)[1\/[1*2] - 1\/[2*3] +...
4,求数列a1=1,an=(2n-3)╱(2n+1)a(n-1) n≥2的通项公式
an=[(2n-3)\/(2n+1)]a(n-1)an\/a(n-1)=(2n-3)\/(2n+1)a(n-1)\/a(n-2)=(2n-5)\/(2n-1)………a2\/a1=(2×2-3)\/(2×2+1)=1\/5 连乘 an\/a1=[1×3×5×...×(2n-3)]\/[5×7×9×...×(2n-3)×(2n-1)×(2n+1)]=3\/[(2n-1)(2n+1)]an=a1× 3\/[...
已知数列{an}满足a(n+1)\/an=n\/(n+2),且a1=3,求an的通项公式
an\/a2n=[a1+(n-1)d]\/[a1+(2n-1)d]=[nd+(a1-d)]\/[2nd+(a1-d)]与n无关 所以d=0,an\/a2n=1,a1=d 则an\/a2n=1\/2 故该集合为{1,1\/2}
数列{an}的通项公式为an=2n+1,n为奇数,2^n,n为偶数,求此数列的前n项...
后面的和为4(1-4^(n\/2))\/(1-4)=4\/3(1-4^(n\/2))故Sn=(n^2+n)\/2+4\/3(1-4^(n\/2))若n为奇数,则n-1为偶数 S(n-1)=[(n-1)^2+(n-1)]\/2+4\/3[1-4^((n-1)\/2)]=(n^2-n)\/2+4\/3[1-4^((n-1)\/2)]Sn=S(n-1)+an=(n^2-n)\/2+4\/3[1-4^((n...
数列{an}的通项公式为an=2n+1,n为奇数,2^n,n为偶数,求此数列的前n项...
an=2^n (n=2,4,6,8.),即4,16,64,256……我们可以等效成cn=4^n (n=1,2,3,4,5……)这样,将一个没有固定求和公式的数列分解成两个有固定求和公式的数列.现在开始讨论.当n为奇数时,此数列的和为bn的前(n+1)\/2项加上cn的前(n-1)\/2项.当n为偶数时,此数列的和为bn的前n\/2...
已知数列{an}的通项公式为an=一分之(2n+1)(2n+3),求数列的前N项和
解:an=1\/(2n十1)(2n十3):Sn二a1十α2十α3十…十αn-1十αn二1\/2(1\/3-1\/5十1\/5-1\/7十…十1\/2n+1-1\/2n十3)=1\/2(1\/3-1\/2n十3)二1\/2ⅹ2n\/6n十9=n\/6n十9
已知数列an的通项公式为an=1\/(n(n+1)(n+2)),求数列an的前n项和Sn
an=1\/2*[1\/n - 2\/(n+1) +1\/(n+2)]Sn=1\/2{(1\/1 -2\/2 + 1\/3)+(1\/2 - 2\/3 +1\/4)+...+ [1\/n - 2\/(n+1) +1\/(n+2)]} =1\/2[1\/1 -1\/2 - 1\/(n+1) +1\/(n+2)]=1\/4-1\/[2*(n+1)(n+2)]
已知数列{an}的通项公式为an=n+1\/2的(n+1)次方,求数列前n项和sn
解:an=n+1\/2^(n+1),则 Sn=a1+a2+...+an =(1+2+...+n)+(1\/2^2+1\/2^3+...+1\/2^(n+1)) (分别是等差数列和等比数列)=(n+1)n\/2+1\/2^2(1-1\/2^n)\/(1-1\/2)=(n+1)n\/2+1\/2-1\/2^(n+1)。
已知数列{AN}的通项公式为AN=(2N)^2\/(2N-1)(2N+1),求它的前N项和。
an=2n\/(2n+1)+2n\/(2n-1)=1-1\/(2n+1)+1+1\/(2n-1)=2+[1\/(2n-1)-1\/(2n+1)]Sn=2n+[(1-1\/3)+(1\/3-1\/5)+...+1\/(2n-1)-1\/(2n+1)]=2n+[(1-1\/(2n+1)]=(4n^2+4n)\/(2n+1)
设数列an的通项公式为an=n(n+1)(n+2),n∈N*则数列an的前n项和
an=n(n+1)(n+2)=n³+3n²+2n 前n项和Sn=a1+a2+...+an =(1³+2³+...+n³)+3(1²+2²+...+n²)+2(1+2+...+n)=[n(n+1)\/2]²+3n(n+1)(2n+1)\/6 +2n(n+1)\/2 =n²(n+1)²\/4 +n(n+1)(...