已知数列an的通项公式为an=1/(n(n+1)(n+2)),求数列an的前n项和Sn

如题所述

第1个回答  2022-08-25
an=1/2*[1/n - 2/(n+1) +1/(n+2)]
Sn=1/2{(1/1 -2/2 + 1/3)+(1/2 - 2/3 +1/4)+...+ [1/n - 2/(n+1) +1/(n+2)]}
=1/2[1/1 -1/2 - 1/(n+1) +1/(n+2)]
=1/4-1/[2*(n+1)(n+2)]

已知数列an的通项公式为an=1\/(n(n+1)(n+2)),求数列an的前n项和Sn
=1\/2[1\/1 -1\/2 - 1\/(n+1) +1\/(n+2)]=1\/4-1\/[2*(n+1)(n+2)]

若数列an的通项为1\/n(n+1)(n+2),求an的前n项和
简单计算一下即可,详情如图所示

已知数列an的通项公式an=1\/(n+2)(n+1),则其前n项和Sn
an=1\/(n+2)(n+1)=1\/(n+1)-1\/(n+2)所以sn=1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+.1\/n-1\/(n+1)+1\/(n+1)-1\/(n+2)=1\/2-1\/(n+2)=n\/(2n+4)

已知数列an=1\/n(n+1)(n+2),求数列的前n项和Sn 最好利用裂项法
an=1\/2*2\/[n(n+1)(n+2)]=1\/2*[(n+2)-n]\/[n(n+1)(n+2)]=1\/2{[(n+2)\/[n(n+1)(n+2)]-n\/[n(n+1)(n+2)]=1\/2{1\/[n(n+1)]-1\/[(n+1)(n+2)]} 所以Sn=1\/2*{1\/1*2-1\/2*3+1\/2*3-1\/3*4+……+1\/[n(n+1)]-1\/[(n+1)(n+2)]} =1\/...

数列{an}的通项为an=1\/2n(2n+2),求{an}的前n项和
an=1\/[2n(2n+2)]= (1\/4) [ 1\/n - 1\/(n+1) ]Sn =a1+a2+...+an =(1\/4) [1-1\/(n+1) ]= n\/[4(n+1)]

数列{an}的通项公式为an=1\/(2n+1)^2,求前n项和Sn
【答案】:style='color:#fe2419;'>an=2n+1(当n为奇数)style='color:#fe2419;'>an=2∧n (当n为偶数)style='color:#fe2419;'>要求n项的和必须n为连续自然数;所以 设奇数n=2m-1;偶数n=2m.(m为连续自然数)style='color:#fe2419;'>所以1、奇数项:an=2n+1=2(2m-1)+1=4m-1...

求数列{1\/n(n+1)(n+2)}的前n项和Sn 怎么计算
简单分析一下即可,详情如图所示

数列an的通项公式an=1\/(n+1)(n+2),则an的前10项之和为?
an=1\/(n+1)(n+2)=[1\/(n+1)]-[1\/(n+2)]Sn=1\/2-1\/3+1\/3-1\/4+···+[1\/(n+1)]-[1\/(n+2)]=1\/2-[1\/(n+2)]将n=10带入 答案为5\/12

已知数列{an}的通项公式是an=1\/{n(n+2) }(n∈N),求它的前n项的和。
an=1\/n(n+2)={1\/n-1\/(n+2)}\/2 a1+a2+...+an=(1\/2)*{1-1\/3+1\/2-1\/4+1\/3-1\/5+1\/4-1\/6+...+1\/n-1\/(n+2)}={1+1\/2-1\/n-1\/(n+2)}\/2

已知数列{an}的通项公式为an=1\/(n+2)(n+1),则前100项和为?
an=[(n+2)-(n-1)]\/(n+1)(n+2)=(n+1)\/(n+1)(n+2)-(n+1)\/(n+1)(n+2)=1\/(n+1)-1\/(n+2)所以S100=1\/2-1\/3+1\/3-1\/4+……+1\/101-1\/102 =1\/2-1\/102 =25\/51

相似回答
大家正在搜