定义在R上的偶函数f(x)满足:f(x+1)=-f(x),且在[-1,0]上是增函数,下面关于f(x)的判断:①f(x

定义在R上的偶函数f(x)满足:f(x+1)=-f(x),且在[-1,0]上是增函数,下面关于f(x)的判断:①f(x)是周期函数;②f(x)的图象关于直线x=2对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是增函数;⑤f(4)=f(0).其中判断正确的命题个数是______.

因为f(x+1)=-f(x)  所以f(x+2)=-f(x+1)=f(x),由函数的周期定义可知该函数的周期为2,由于f(x)为定义在R上的偶函数且在[-1,0]上为单调递增函数,所以由题意可以画出一下的函数草图为:

由图及题中条件可以得到:
①正确,周期T=2;
②由图可以知道该函数关于x=1对称,所以②不正确;
③由已知条件 y=f(x)是定义在R上的偶函数且在[-1,0]上是增函数,所以y=f(x)在[0,1]上为单调递减函数,故③错;
④f(x)在[1,2]上是增函数,故④正确;
⑤f(4)=f(0),正确.
故答案为:3
温馨提示:内容为网友见解,仅供参考
无其他回答

已知定义在R上的偶函数f(x)满足条件:f(x+1)=-f(x),且在[-1,0...
解答:解:∵f(x+1)=-f(x),∴f(x+2)=f[(x+1)+1]=-f(x+1)=f(x),故f(x)是以2为周期的周期函数,故①正确;∵偶函数f(x)在对称区间上单调性相反,且f(x)在[-1,0]上是增函数,得f(x)在[0,1]上是减函数,故②错误;∵f(x)在[-1,0]上是增函数...

...满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下面关于f(x)的判断...
由f(x+1)=-f(x)可得f(x+2)=-f(x+1)=-[-f(x)]=f(x),即可得周期T=2,故①正确;由f(x)为偶函数且在[-1,0]上单增可得f(x)在[0,1]上是减函数,故②错;由于f(x)在[0,1]上是减函数,又∵f(x+2)=f(x)=f(-x),∴y=f(x)的图象关于x=1...

定义在R上的偶函数f(x)满足:f(x+1)=-f(x),且在[0,1]上是增函数,下面关...
f(x+2)=-f(x+1)=f(x),所以函数f(x)是以2为周期的偶函数,所以①正确;又函数在[0,1]上是增函数,所以②正确;③正确;④错误.故答案为:①、②、③.

...满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的_百度...
f(x)是定义在R上的偶函数,f(x)关于y轴对称f(-x)=f(x)又f(x+1)=-f(x)f(x+2)=f(x+1+1)=-f(x+1)=f(x)所以2为f(x)的一个周期①f(x)关于x=2对称,正确②2为f(x)的一个周期,f(x)在[-1,0]上是增函数,在(-∞,+∞)上的偶函数f(x)...

...偶函数,满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于函数y...
所以②正确;③有已知条件 y=f(x)是定义在R上的偶函数且在[-1,0]上是增函数,所以y=f(x)在[0,1]上为单调递减函数,故③错;④对于f(x+1)=-f(x),令x=-12,得到:f(12)=-f(-12)?f(12)=?f(12)(因为函数f(x)为偶函数)∴f(12)=0故④正确.

...的偶函数满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于fx判断...
f(x+1)=-f(x)∴f(x+2)=f(x)在[-1,0]上是增函数 f(x)是偶函数 ∴在[0,1]上是减函数 将f(x)在[-1,1]上的图像向左右每2单位平移得到全体f(x)∴①对,②对,③错,④错,⑤对 如果你认可我的回答,请点击“采纳回答”,祝学习进步!手机提问的朋友在客户端右上角评价点【...

...满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3), b=f( 2_百度...
∵f(x)满足f(x+1)=-f(x)∴f(x+2)=-f(x+1)=f(x)即函数是以2为周期的周期函数.∵定义在R上的偶函数f(x),且在[-1,0]上单调递增根据偶函数的性质可得函数在[0,1]单调递减.而a=f(3)=f(1), b=f( 2 ) = f(2- 2 ) ,c=f(2)=f(0...

定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间{-1,0}上为递增,则...
在 f(x+1)=-f(x) (1)中用x+1替换 x,得 f(x+2)=-f(x+1) (2)对比 (1),(2)得 f(x+2)=f(x)又f(x)偶,所以 f(3)=f(1)=f(-1)f(2)=f(0)f(√2)=f(√2-2)因为 -1<√2 -2<0,所以 f(-1)<f(√2-2)<f(0)即 f(3)<f(√2)<f(2)...

...满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(2),c=f...
∵偶函数f(x)满足f(x+1)=-f(x),∴f(x+2)=-f(x+1)=f(x),∴函数的周期为2.由于a=f(3)=f(-1),b=f(2)=f(2-2),c=f(2)=f(0),由于-1<2-2<0,且函数f(x)在[-1,0]上单调递增,∴c>b>a,故选D.

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函...
①由f(x+1)=-f(x),得f(x+2)=f(x),所以函数f(x)是周期函数,周期为2.所以①正确.②因为f(x+2)=f(x),且函数为偶函数,所以f(x+2)=f(-x),即f(1+x)=f(1-x),所以f(x)关于直线x=1对称,所以②正确.③因为函数f(x)是周期为2的函数且在[-1,0]上是增函数,所以f(x)在[1...

相似回答