排列组合A和C都有哪些计算方法?

如题所述

计算方法——

(1)排列数公式

排列用符号A(n,m)表示,m≦n。

计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!

此外规定0!=1,n!表示n(n-1)(n-2)…1

例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。

(2)组合数公式

组合用符号C(n,m)表示,m≦n。

公式是:C(n,m)=A(n,m)/m! 或 C(n,m)=C(n,n-m)。

例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。



扩展资料:

排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算;定义的前提条件是m≦n,m与n均为自然数

(1)从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

(2)从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。

参考资料来源:百度百科-组合数公式

温馨提示:内容为网友见解,仅供参考
第1个回答  2019-11-09

计算方法如下:

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)

组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;

例如A(4,2)=4!/2!=4*3=12

C(4,2)=4!/(2!*2!)=4*3/(2*1)=6

扩展资料:

基本理论和公式

排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。

(一)两个基本原理是排列和组合的基础

(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。 

这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。

(二)排列和排列数

(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.

从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.

(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列

当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!

参考资料:百度百科--排列数公式

第2个回答  2020-01-14

《猎人海力布》民间故事

第3个回答  2023-05-17
排列计算方法:1. 直接列举:将元素填入位置,直到所有元素都有位置为止。2. 公式法:从n个元素中取出m个,有n*(n-1)*(n-2)*...*(n-m+1)种排列方法,即n P m。组合计算方法:1. 直接列举:将元素填入位置,但不考虑元素的顺序,只要这些元素能够组成集合即可。2. 公式法:从n个元素中取出m个,有n!/[(n-m)!m!]种组合方法,即C(n,m)或者C(n,m)=P(n,m)/m!。
第4个回答  2019-12-17

排列组合A和C都有哪些计算方法?
公式是:C(n,m)=A(n,m)\/m! 或 C(n,m)=C(n,n-m)。例如:C(5,2)=A(5,2)\/[2!x(5-2)!]=(1x2x3x4x5)\/[2x(1x2x3)]=10。

排列组合公式a和c计算方法
排列A(n,m)=n×(n-1)...(n-m+1)=n!\/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)=P(n,m)\/P(m,m) =n!\/m!(n-m)!例如A(4,2)=4!\/2!=4*3=12C(4,2)=4!\/(2!*2!)=4*3\/(2*1)=6排列a与组合c计算方法计算方法如下排列A(n,m)=n×(n-1).(...

排列组合的C和A怎么计算?
排列组合的C和A的计算方法如下:C(n, m) = n! \/ [m!(n-m)!]A(n, m) = n! \/ (n-m)!其中,n表示总的元素数量,m表示要选择的元素数量,!表示阶乘。组合数C(n, m)的计算:组合数C(n, m)表示从n个不同的元素中选出m个元素的所有可能组合的个数。计算公式为C(n, m) = n!

排列组合中的C和A怎么算?
排列:A(n,m)=n×(n-1)(n-m+1)=n!\/(n-m)!(n为下标,m为上标)组合:C(n,m)=P(n,m)\/P(m,m) =n!\/m!(n-m)!例如:A(4,2)=4!\/2!=4*3=12 C(4,2)=4!\/(2!*2!)=4*3\/(2*1)=6

排列组合中A和C怎么算啊
排列组合中的A和C分别通过排列数公式和组合数公式来计算。排列数A表示从n个不同元素中取出m个元素的所有排列的个数。其计算公式为A = n! \/ !,其中n!表示n的阶乘,即n××...×3×2×1。这个公式反映了从n个元素中选取m个元素进行排列时,第一个位置有n种选择,...

排列组合中C和A怎么计算?
为了更直观地理解,可以举一个简单的例子:假设有3个字母A、B、C,要从中选出2个字母。如果使用组合数C来计算,结果为3,表示有3种不同的组合方式:AB、AC和BC。而如果使用排列数A来计算,结果为6,表示有6种不同的排列方式:AB、BA、AC、CA、BC和CB。这就是组合数和排列数在实际应用中的...

排列组合中的a和c怎么算的?
C(m,n)m在下,n在上是代表从m个元素里面任选n个元素进行组合 C的计算:下标的数字乘以上标的数字的个数,且每个数字都要-1.再除以上标的阶乘。如:C5 3(下标是5,上标是3)=(5X4X3)\/3X2X1。3X2X1(也就是3的阶乘)A的计算:跟C的第一步一样。就是不用除以上标的阶乘。如:A4 2...

排列组合中A和C怎么算啊
在排列组合中,A代表排列数,C代表组合数。它们的计算方法分别如下:排列数A的计算公式是:A = n! \/ !,其中n是总的元素数量,m是取出的元素数量,"!"代表阶乘,即一个数从1乘到该数的结果。这个公式用于计算在n个元素中取出m个元素进行排列的所有可能性。组合数C的计算公式是:C = n! \/ [...

排列组合中C和A怎么计算?
在排列组合中,C和A的计算有着明确的公式。A,即排列,指的是从n个不同元素中选取m个元素并按照顺序排列的方式数,其计算公式为A(n,m) = n × (n-1) × (n-m+1) = n! \/ (n-m)!,其中n!表示n的阶乘。例如,A(4,2) = 4 × 3 = 12,因为4个不同元素中取2个元素的所有排列...

排列组合中的c和a怎么算?
答案:排列组合中的C表示组合,A表示排列。计算公式为:C=n!\/[m!!],表示从n个不同元素中取出m个元素的组合数。其中n!代表n的阶乘,即n××...×3×2×1。组合不考虑取出的顺序。A=n!\/!,表示从n个不同元素中取出m个元素进行排列的总数。排列考虑元素的顺序。...

相似回答