1/(1*3)+1/(2*4)+1/(3*5)+......+1/(48*50)=______
求解答过程。
数学题:1\/(1*3)+1\/(2*4)+1\/(3*5)+...+1\/[n*(n+2)]=
1\/(1*3)=(1-1\/3)\/2 1\/(2*4)=(1\/2-1\/4)\/2 ...原式*2= 1-1\/3+1\/2-1\/4...1\/n-1\/(n+2)=1+1\/2-1\/3+1\/3-1\/4+1\/4...1\/(n+1)-1\/(n+2)=1+1\/2-1\/(n+1)-1\/(n+2)=3\/2-1\/(n+1)-1\/(n+2)然后把让面的结果除以二化简一下就行了。
...1\/(1*2*3)+1\/(2*3*4)+1\/(3*4*5)+...1\/(18*19*20)=?
1\/(1*2*3)=(1\/2)*(1\/1*2-1\/2*3)1\/(2*3*4)=(1\/2)*(1\/2*3-1\/3*4)1\/(3*4*5)=(1\/2)*(1\/3*4-1\/4*5)以此类推,规律就出现了。接下来就看你了。
1\/(1*3)+1\/(3*5)+1\/(5*7)+...+1\/(49+51)的简便运算
=1\/2[1-1\/50]=(1\/2)*(49\/50)=49\/100 思路说明:观察每项的分母的两个因数(1、3;3、5;5、7;...;49、50)之间差都是2,如果折解为两个因数的倒数的因式差,则为1\/1-1\/3=2\/1*3; 1\/3-1\/5=2\/3*5; 1\/5-1\/7=2\/5*7;...;1\/49-1\/50=2\/49*50, 这样整个序列...
1\/1*3+1\/3*5+...1\/49*51的答案
1\/1*3+1\/3*5+...1\/49*51 =1\/2 * [(1-1\/3)+(1\/3-1\/5)+(1\/5-1\/7)………]前后消去很多 =1\/2 * (1-1\/51)=25\/51
1*3+2*4+3*5+4*6...+48*50=?
N*(N+2)=N^2+2N (N从1-48)原式=(1^2+2*1)+(2^2+2*2)+..+(48^2+2*48)=(1^2+2^2+3^2..+48^2)+2*(1+2+3+..+48)=48*(48+1)*(2*48+1)\/6+48*(48+1) [平方和公式,等差数列求和公式]=40376
1\/(1×3)+1\/(3×5)+1\/(5×?
简便计算过程为:1\/(1×3)+1\/(3×5)+1\/(5×7)++……1\/(17×19)+1\/(19×21)=1\/2×(1-1\/3)+1\/2×(1\/3-1\/5)+1\/2×(1\/5-1\/7)+……+1\/2×(1\/17-1\/19)+1\/2×(1\/19-1\/21)=1\/2×(1-1\/3+1\/3-1\/5+1\/5-1\/7+……+1\/17-1\/19+1\/19-...
求1\/1*3+1\/2*4+1\/3*5+...+1\/n(n+2)=?
1\/n(n+2)=1\/2[1\/n-1\/(n+2)]所以1\/1*3+1\/2*4+1\/3*5+...+1\/n(n+2)=1\/2[1\/1-1\/3+1\/2-1\/4+1\/3-1\/5+...+1\/n-1\/(n+2)=1\/2[1+1\/2-1\/(n-1)-1\/(n-2)]=3\/8-1\/2(n-1)-1\/2(n-2)
(1+1\/1×3)(1+1\/2×4)(1+1\/3×5)……(1+1\/49×51)
原式=2^2\/((2-1)*(2+1))*3^2\/((3-1)*(3+1))*…*50^2\/((50-1)*(50+1))=2\/1*2\/3*3\/2*3\/4*…*50\/49*50\/51 =2*50\/51 =100\/51
一道初中数学计算题:1\/1*3+1\/2*4+1\/3*5+1\/4*6+1\/5*7+1\/6*8---1\/17...
=1\/2[(1-1\/3)+(1\/2-1\/4)+(1\/3-1\/5)+...+(1\/17-1\/19)+(1\/18-1\/20)=1\/2[1+1\/2-1\/3+1\/3-1\/4+1\/4-...-1\/18+1\/18-1\/19-1\/20]=1\/2(1+1\/2-1\/19-1\/20)=(1\/2)*(531\/380)=531\/760
1\/1*2+1\/2*3+1\/3*4+.+1\/49*50=? 简便计算啊
1\/1*2=1-1\/2 1\/2*3=1\/2-1\/3 ……1\/49*50=1\/49-1\/50 所以原式=1-1\/2+1\/2-1\/3……+1\/49-1\/50=1-1\/50=49\/50 叫裂项法