数学题:1/(1*3)+1/(2*4)+1/(3*5)+....+1/[n*(n+2)]=

如题所述

第1个回答  2012-08-01
1/(1*3)=(1-1/3)/2
1/(2*4)=(1/2-1/4)/2
.
.
.
.原式*2=
1-1/3+1/2-1/4...............1/n-1/(n+2)=1+1/2-1/3+1/3-1/4+1/4..........1/(n+1)-1/(n+2)=1+1/2-1/(n+1)-1/(n+2)=3/2-1/(n+1)-1/(n+2)
然后把让面的结果除以二化简一下就行了。
第2个回答  2012-08-01
俊狼猎英团队为您解答:

1/(1×3)=1/2(1/1-1/3)
1/(2×4)=1/2(1/2-1/4)
1/(3×5)=1/2(1/3-1/5)
……
1/[n(n+1)]=1/2[1/n-1/(n+1)]
以上各式相加得:
原式=1/2[1+1/2-1/(n+1)-1/(n+2)]
=1/2*[3(n+1)(n+2)-2(n+2)-2(n+1)]/[2(n+1)(n+2)]
=(3n^2+5n)/[4(n+1)(n+2)]本回答被提问者采纳
第3个回答  2012-08-01
列项求合法,怎么不会哦,记住方法这种题最简单啦
第4个回答  2012-08-01
裂项法
原式=(n+1)/(2n+4)
第5个回答  2012-08-01
1/2*[1+1/2-1/(n+1)-1/(n+2)]

数学题:1\/(1*3)+1\/(2*4)+1\/(3*5)+...+1\/[n*(n+2)]=
1\/(1*3)=(1-1\/3)\/2 1\/(2*4)=(1\/2-1\/4)\/2 ...原式*2= 1-1\/3+1\/2-1\/4...1\/n-1\/(n+2)=1+1\/2-1\/3+1\/3-1\/4+1\/4...1\/(n+1)-1\/(n+2)=1+1\/2-1\/(n+1)-1\/(n+2)=3\/2-1\/(n+1)-1\/(n+2)然后把让面的结果除以二化简一下就行了。

计算:1\/(1*3)+1\/(2*4)+1\/(3*5)+…+1\/(n(n+1)(n+2))
1\/(2×4)=(1\/2-1\/4)×1\/2 1\/(3×5)=(1\/3-1\/5)×1\/2 ……1\/[n(n+2)]=[1\/n-1\/(n+2)]×1\/2 那么:1\/(1×3)+1\/(2×4)+1\/(3×5)+……+1\/[n(n+2)]=(1\/1-1\/3)×1\/2+(1\/2-1\/4)×1\/2+(1\/3-1\/5)×1\/2+……+[1\/n-1\/(n+2)]×1\/2 =...

数学问题,求方法步骤!1\/1*3+1\/2*4+1\/3*5+...+1\/18*20 简便运算
1\\1*3=3(乘数)\\1(除数)=3 1\\2*4=4(乘数)\\2(除数)=2。。。以此类推

1\/1*2*3+1\/2*3*4+...+1\/n(n+1)(n+2) 的求和公式怎么推导?
1\/[(1 n)*(2 n)]= 1\/(n 1)-1\/(2 n)再求和其中很多项都抵消了 最后的和为:S=0.25-[1\/(n*n)]\/[1 (3\/n) (2\/(n*n))]就是化简后的结果了。形式:把相等的式子(或字母表示的数)通过“=”连接起来。等式分为含有未知数的等式和不含未知数的等式。例如:x+1=3——含有未...

1\/(1×3)+1\/(2×4)+1\/(3×5)+1\/(4×6)...1\/(18×20)
1\/(1*3)=1\/2*(1-1\/3)1\/(2*4)=1\/2*(1\/2-1\/4)后面的都能这么化简 所以原式等于1\/2*(1-1\/3+1\/3-1\/5+1\/5-1\/7...+1\/17-1\/19)+1\/2*(1\/2-1\/4+1\/4-1\/6...+1\/18-1\/20)中间的能全部抵消 所以等于1\/2*(1-1\/19)+1\/2*(1\/2-1\/20)=9\/19+9\/40 =531\/...

(1+1\/1*3)+(1+1\/2*4)+...+(1+1\/98*100)+(1+1\/99*101)规律
(1+1\/1*3)+(1+1\/2*4)+...+(1+1\/98*100)+(1+1\/99*101)注意 1\/[n(n+2)]=[1\/n-1\/(n+2)]\/2=1\/(2n)-1\/(2n+4)1\/1*3=1\/2-(1\/6)1\/2*4=1\/4-[1\/8]1\/3*5=(1\/6)-1\/10 1\/4*6=[1\/8]-1\/12 ……注意括号 ...

一道初中数学计算题:1\/1*3+1\/2*4+1\/3*5+1\/4*6+1\/5*7+1\/6*8---1\/17...
=1\/2[(1-1\/3)+(1\/2-1\/4)+(1\/3-1\/5)+...+(1\/17-1\/19)+(1\/18-1\/20)=1\/2[1+1\/2-1\/3+1\/3-1\/4+1\/4-...-1\/18+1\/18-1\/19-1\/20]=1\/2(1+1\/2-1\/19-1\/20)=(1\/2)*(531\/380)=531\/760

...Sn=1\/(1*2)+1\/(2*3)+1\/(3*4)+...+1\/[n*(n+1)]
1\/(1*2) = 1-1\/2 1\/(2*3) = 1\/2-1\/3 1\/(3*4) = 1\/3-1\/4 ...1\/[n*(n+1)] =1\/n-1\/(n+1)把上面的相加 第一个的-1\/2 和第二个的1\/2 抵消 第二个的-1\/3 和第三个的1\/3 抵消 以此类推 前一项的后面都可以写后一项的前面抵消 ...倒数第二项的-1\/n 和...

1\/(1*2*3)+1\/(2*3*4)+1\/(3*4*5)+……+1\/(99*100*101)等于多少???
首先,1\/(1*2*3)分成1\/1*3 -1\/2*3 1\/(2*3*4)分成1\/2*4 -1\/3*4 后面的一次类推,再分一下组,相加的一组相减的一组。我们先算相减的一组是 -1\/2+1\/3-1\/3+1\/4-1\/4+1\/5……-1\/100+1\/101 得出的结果是 -1\/2+1\/101 下面算相加的一组,相加的一组要先乘以2,...

计算:1\/(1*3)+1\/(3*5)+……+1\/(99*101)
1\/(1*3)+1\/(3*5)+……+1\/(99*101)=1\/2*(1-1\/3)+1\/2*(1\/3-1\/5)+...+1\/2*(1\/99-1\/101)=1\/2*(1-1\/3+1\/3-1\/5+...+1\/99-1\/101)=1\/2*(1-1\/101)=1\/2*100\/101 =50\/101

相似回答
大家正在搜