初中数学思想方法有哪些

如题所述

根据大纲’‘精神,初中数学的基本思想主要指转化、分类、数形结合等基本方法主要指待定系数法、消儿法、配方法、换元法、图象法等由于数学方法在教材中大都有具体陈述,而数学思想却是隐含在知识系统之中.这为强化数学思想方法带来了一定困难_为此.下面谈谈转化、分类讨论、数形结合等在初中数学中的表现「〕1.转化思想所谓转化思想是指一种研究对象在一定条件下转化为另一种研究对象的思维方式转化思想是数学思想方法的核心,其它数学思想方法都是转化的手段或策略)初中数学中运用转化思想具体表现在以下三个方面:(l)把新问题转化为原来研究过的问题如有理数减法转化为加法,除法转化为乘法等(助把复杂的问题转化为简单的问题(,新问题用已有的方法不能或难以解决时,建立新的研究方式如引进负数,建立数轴;变利用逆运算的性质解方程为利用等式的性质解方程,等等。‘2.分类讨论思想所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象本质属性的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的思想方式。在分类讨论中要注意标准的同一性.即划分始终是同一个标准、这个标准必须是科学合理的;分域的互斥性.即所分成的各类既要互不包含.义要使各类总和等于讨论的全集;分域的逐级性,有的问题分类后还可在每,类中丙继续分类。运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化.并逐步形成一个完整的知识结构网络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。在初中数学中需要分类讨沦的问题主要表现个方而:(扮有的数学概念、定理的论证包含多种情况.这类问题需要分类讨论。如平面儿何中二角形的分类、四边形的分类、角的分类、圆周角定理、圆幂定理、弦切角定理等的证明,都涉及到分类i寸论(约解含字毋参数或绝对值符号的为一程、不等式、讨论算术根、正比例和反比例的数中二次项系数、,与图象的开l:]方向等,由于这些参数的取位不同或要去掉绝对值符号就有不同的结果.这类问题需要分类讨论(3)有的数学问题.虽结论惟一但导致这结论的前提不尽相同.这类问题也要分类讨论3一效形结合思想所谓数形结合是指抽象的数学语言与形象直观的图形结合起来.从而实现由抽象向具体转化的一种思维方式。著名数学家华罗庚说过:数缺形时不直观,形少数时难人微有些数最关系.借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化,而图形的一些性质.借助于数量的计算和分析.得以严谨化。在初中阶段,数形结合的形可以是数轴、函数的图象和几何图形等等.它们都具有形象化的特点数形结合思想在初中数学中主要表现在以下两个方面;(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元三次方程的根以及讨论一7乙一次小等式等等(2)以数助形,帮助学生简化解题方法。初中数学中还渗透了类比、归纳、联想等数学思想方法这些思想力一法之间,是相互渗透、互相促进的,在数学教学中要有机地结合起来
温馨提示:内容为网友见解,仅供参考
第1个回答  2019-03-22
‘2.分类讨论思想所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象本质属性的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的思想方式。在分类讨论中要注意标准的同一性.即划分始终是同一个标准、这个标准必须是科学合理的;分域的互斥性.即所分成的各类既要互不包含.义要使各类总和等于讨论的全集;分域的逐级性,有的问题分类后还可在每,类中丙继续分类。运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化.并逐步形成一个完整的知识结构网络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。在初中数学中需要分类讨沦的问题主要表现个方而:(扮有的数学概念、定理的论证包含多种情况.这类问题需要分类讨论。如平面儿何中二角形的分类、四边形的分类、角的分类、圆周角定理、圆幂定理、弦切角定理等的证明,都涉及到分类i寸论(约解含字毋参数或绝对值符号的为一程、不等式、讨论算术根、正比例和反比例的数中二次项系数、,与图象的开l:]方向等,由于这些参数的取位不同或要去掉绝对值符号就有不同的结果.这类问题需要分类讨论(3)有的数学问题.虽结论惟一但导致这结论的前提不尽相同.这类问题也要分类讨论3一效形结合思想所谓数形结合是指抽象的数学语言与形象直观的图形结合起来.从而实现由抽象向具体转化的一种思维方式。著名数学家华罗庚说过:数缺形时不直观,形少数时难人微有些数最关系.借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化,而图形的一些性质.借助于数量的计算和分析.得以严谨化。在初中阶段,数形结合的形可以是数轴、函数的图象和几何图形等等.它们都具有形象化的特点数形结合思想在初中数学中主要表现在以下两个方面;(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元三次方程的根以及讨论一7乙一次小等式等等(2)以数助形,帮助学生简化解题方法。初中数学中还渗透了类比、归纳、联想等数学思想方法这些思想力一法之间,是相互渗透、互相促进的,在数学教学中要有机地结合起来
第2个回答  2014-02-16
中学数学中的数学思想方法

数学思想方法,从接受的难易程度可分为三个层次:

一是基本具体的数学
方法,如配方法、换元法、待定系数法、归纳法与演绎法等;二是科学的逻辑方
法,如观察、归纳、类比、抽象概括等方法,以及分析法、综合法与反证法等逻
辑方法;三是数学思想,如数形结合的思想、函数与方程的思想、分类讨论的思
想及化归与转化的思想。
数学思想方法还可以按其他方式进行分类。
例如,
胡炯
涛认为:

最高层次的基本数学思想是数学教材的基础与起点,整个中学教学的
内容均遵循着基本数学思想的轨迹而展开。
“符号化与变换思想”

“集合与对应
思想”以及“公理化与结构思想”构成了最高层次的基本数学思想。他认为中学
数学基本思想是指:

渗透在中学数学知识与方法中具有普遍而强有力适应性的
本质思想。归纳为十个方面内容:

符号思想、映射思想、化归思想、分解思想、
转换思想、参数思想、归纳思想、类比思想、演绎思想、模型思想。

逻辑学中的方法:

分析法、综合法、反正法、归纳法;具体数
学方法:

配方法、换元法、待定系数法、同一法等本回答被提问者和网友采纳

初中数学八大思想方法
8、极限思想方法。事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

数学常用的数学思想方法有哪些
初中数学中的思想方法多种多样,常见的有八种:一、用字母表示数的思想,是代数学习的基础。如设甲数为a,乙数为b,可表示为2(a+b)、2a-5b等。二、数形结合的思想,是数学研究的重要方法。它强调数与形的相互转化,如数轴、坐标系、函数图像等。三、转化思想,即将未知问题转化为已知问题。如分...

数学思想方法有哪七种
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的...

初中数学思想方法有哪些
初中数学思想方法有分类讨论思想、整体思想、方程思想、数形结合思想、比思想。1、分类讨论思想:把所要研究的问题根据题目的特点和要求,分成若干类,转化成若干个小问题来解决。2、整体思想:一般我们把从问题的整体观点出发,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法...

中学数学中的数学思想方法有哪些?就其中3种进行举例说明。
中学数学中的数学思想方法主要包括:抽象思维、逻辑思维、创新思维、实证思维、直觉思维等。下面我将就其中三种进行举例说明。抽象思维 抽象思维是指通过抽象化、概括化和简化等方式,将复杂的问题转化为简单的模型或符号,以便更好地加以研究和解决。例如,在初中数学中,我们学习到了平面直角坐标系和三角函数...

数学思想方法 数学思想方法有哪些
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知...

数学八种思维方法分别是?
1. 代数思想:这是数学中一种基本的思想方法,我们在小学阶段通过设未知数x来培养这种思想,在初中阶段则通过用字母代表数来进一步理解。代数思想是代数学科的基础。2. 数形结合:这是数学中非常重要的一个思想方法,能够帮助我们在解决许多数学问题时更加直观。正如我国著名数学家华罗庚教授所说:“数缺...

初中数学思想方法有哪些
初中数学思想方法如下:1、分类讨论思想:在解决某些数学问题时,如果对象的情况多样化或存在不同的可能性,我们需要按照可能出现的各种情况分别讨论,这就是分类讨论思想。例如,在求解一元二次方程的根时,我们需要根据判别式的值来分类讨论。2、数形结合思想:数形结合思想是初中数学中最基本的思想方法...

初中数学十大思想方法
分类讨论思想在数学中非常关键。当研究对象具有多种性质时,我们需要根据不同情况分别讨论,从而找到问题的解决方法。这种方法不仅有助于清晰地理解问题,还能确保我们在处理复杂问题时不会遗漏任何细节。待定系数法适用于已知数学式子具有特定形式的情况。通过代入已知条件,可以得到含有待定系数的方程或方程组,...

初中数学包含哪些数学思想
主要有以下几类思想方法:1、字母表示数思想 2、方程(函数)思想 3、分类讨论思想 4、整体思想 5、转化思想 6、数形结合思想 7、对称思想

相似回答