1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...1\/(1+2+3+...99+100)
= 2[1\/n - 1\/(n + 1)]那么有:1\/1 + 1\/(1 + 2) + 1\/(1 + 2 + 3) + ... + 1\/(1 + 2 + 3 + ... + 100)= 1 + 2\/(2*3) + 2\/(3*4) + ... + 2\/(100*101)= 1 + 2*(1\/2 - 1\/3) + 2*(1\/3 - 1\/4) + ... + 2*(1\/100 - 1\/101)=...
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+1\/1+2+3+4+5+...+1\/!+2+3+...+100=?_百 ...
1\/1+2+3+...+n=2\/n(n+1)=(2\/n)-(2\/n+1)所以1+ 1\/1 +2+ 1\/1 +2+3+ 1\/1 +2+3+4+ 1\/1 +2+3+4+5+...+ 1\/1 +2+3+...+100=1+(2\/2-2\/3)+(2\/3-2\/4)+(2\/4-2\/5)+...+(2\/100-2\/101)=1+1-2\/101=200\/101 ...
1+1\/1+2+1\/1+2+3+……+1\/1+2+3+……+100
所以1+1\/1+2+1\/1+2+3+……+1\/1+2+3+……+100 =2*[(1\/1-1\/2)+(1\/2-1\/3)+……+(1\/100-1\/101)]=2*(1\/1-1\/101)=200\/101
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(...
1+1\/1+2+1\/1+2+3+...+1\/1+2+3+4+...+99+100
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...1\/1+2+3+...+100 =1+1\/[(1+2)×2÷2]+1\/[(1+3)×3÷2]+1\/[(1+4)×4÷2]+...1\/[(1+100)×100÷2]=1+2\/(1+2)×2+2\/(1+3)×3+2\/(1+4)×4+...2\/(1+100)×100 =1+2×(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5...
1+ 1\/1+2 + 1\/1+2+3 + 1\/1+2+3+4 +… 1\/1+2+3…+100=
1+1\/3+1\/6+1\/10+1\/15+……+1\/5050 =2(1\/1-1\/2)+2(1\/2-1\/3)+2(1\/3-1\/4)+2(1\/5-1\/6)+...+2(1\/100-1\/101)=2(1\/1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/5-1\/6+...+1\/100-1\/101)=2(1\/1-1\/101)=2*(100\/101)=200\/101 ...
1+1\/(1+2)+1\/(1+2+3)+···1\/(1+2+3+···+100)等于几?
1+2+3+……+n=n(n+1)\/2 1\/(1+2+3+……+n)=2\/[n(n+1)]=2[1\/n-1\/(n+1)]所以1+1\/(1+2)+1\/(1+2+3)+···1\/(1+2+3+···+100)=1+2*[(1\/2-1\/3)+(1\/3-1\/4)+……+(1\/100-1\/101)]=1+2*(1\/2-1\/101)=2-2\/101 =200\/101 ...
1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+4+…+100)=小学解法
小学的解法不是很确定,不知小学生知不知道 1+2+3+...+100=100(100+1)\/2?如果知道就好办了 1=2(1-1\/2)1\/(1+2)=2(1\/2-1\/3)...1\/(1+2...+100)=2\/(100*101)=2(1\/100 -1\/101)1+1\/(1+2)+1\/(1+2+30+...1\/(1+2+...+100)=2(1-1\/101)=200\/101 ...
1+2分之1加2+3分之1加3+4分之一一直到99+100分之一???
=(1+2+3+4+5+…+100)+(1+1\/2+1\/3+...+1\/100)-1=5050+5.18239-1= 5054.18239 第一行中这个数组是发散的,所以没有求和公式,只有这个近似的求解方法 1+1\/2+1\/3+…+1\/n是没有好的计算公式的,所有计算公式都是计算近似值的,且精确度不高。自然数的倒数组成的数列,称为调和数...
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+100这道数学题怎么做,尽量...
化减:2\/1*2+2\/2*3+2\/3*4+…然后列项:(2\/1-2\/2)+(2\/2-2\/3)…然后化简:2\/1-2\/101=200\/101 如果取极限得2