谁能帮我解析一下飞机翼的奥秘?

物理问题

机气动布局简介想必很多人对飞机很感兴趣,因为飞机大多是很漂亮的,流线型的机身,舒展的机翼,实现了人类在蓝天翱翔的梦想。其实飞机外型的美观虽然是人类主动的设计创作,而实质却是受制于空气阻力的被动结果,从某种意义上讲,这种符合人类审美标准的流畅线条其实是空气动力原理的杰作。 大千世界千变万化,飞机也是形态各异,大的、小的、胖的、瘦的,四个翅膀的、两个翅膀的甚至还有一个翅膀的,打个比方,飞机的式样就像宠物狗一样,当真是品种丰富,血统复杂。俗话说外行看热闹,内行看门道,既然飞机的外观是空气动力原理决定的,那么这么多种飞机的形状在飞机设计中就有个称谓,叫做空气动力布局。下面我们就逐一介绍一下各种气动布局,当了解到气动布局这个概念后再回过头来看这些飞机,就会发现自己不会再看花眼了,其实全世界的飞机品种再多,也无非就以下这几种气动布局而已。各种空气动力布局的主要差别就在于机翼位置上的差别,首先介绍一个最常见的布局——常规布局。这种布局的特点是有主机翼和水平尾翼,大的主机翼在前,小机翼也就是水平尾翼在后,有一个或者两个垂直尾翼。世界上绝大多数飞机属于这种气动布局,特别是客运、货运大型飞机,几乎全是这种布局,例如波音系列、欧洲的空中客车系列,我国的运七、运八、ARJ21,美国的C130等。我国的军用飞机中除了歼10猛龙战斗机以外,都是常规气动布局。常规布局最大的优点是技术成熟,这是航空发展史上最早广泛使用的布局,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡,所以目前无论是民用飞机还是军用飞机绝大多数使用这种气动布局。常规气动布局机型——我国的ARJ21祥凤支线客机常规气动布局机型——我国的FC-1枭龙歼击机 常规气动布局机型——我国的歼11B歼击机 常规布局中还有一个另类——变后掠翼布局,就是主翼的后掠角度可以改变,高速飞行可以加大后掠角,相当于飞鸟收起翅膀,低速飞行时减小后掠角,展开翅膀。这种布局的优势在于可以适应高速和低速时的不同要求,起降性能好,缺点是结构的复杂性严重增加了飞机重量,随着发动机技术特别是矢量推力技术的不断发展和鸭翼的应用,这种布局逐渐趋于淘汰。变后掠翼布局典型机型有前苏联的米格27、图22,美国的F14、F111、B1,北约的狂风等。变后掠翼气动布局——俄罗斯图22逆火战略轰炸机变后掠翼气动布局——美国F14雄猫舰载歼击机变后掠翼气动布局——北约狂风战斗轰炸机无尾布局,这种气动布局顾名思义就是没有尾巴的气动布局。这里的“尾巴”指的是水平尾翼,主翼在机尾,实际起到水平尾翼的作用。无尾布局的最大优点是高速飞行时性能优异,大家可以想象一下,无尾布局是最接近飞镖、导弹、火箭的气动布局,航天飞机采用的也是无尾布局,因为这是最适合高速飞行的布局,阻力小,结构强度大。由于没有水平尾翼,无尾布局大大减少了空气阻力,因为在常规布局中,从主翼表面流过来的气流会在水平尾翼形成阻力,同时为了平衡主翼的升力,水平尾翼其实一直充当一个“向下压”的角色,会损失掉一部分升力,所以和常规布局相比没有水平尾翼的无尾布局的空气动力效率要高很多,更适合高速飞行。无尾布局机翼承载重量更合理,和机身链接结构更稳固,这就简化了机身结构,再加上去掉了水平尾翼和相关的操控系统后,机身重量可以大大降低。无尾布局的缺点是低速性能不好,这影响到飞机的低速机动性能和起降能力。另外无尾布局因为只能依靠主翼控制飞行,所以稳定性也不理想。无尾布局在欧洲应用最为普及,法国的幻影系列是典型机型。无尾气动布局机型——法国幻影2000无尾气动布局机型——英法联合研制的协和超音速客机无尾气动布局机型——英国火神轰炸机针对无尾布局的低速性能和稳定性的缺陷,后来飞机设计师们又重新搬出了莱特兄弟的世界上第一架飞机的气动布局——鸭式布局,因为当初这种气动布局的飞机飞起来像鸭子,故此得名。鸭式布局也是主翼在后面,前面加个小机翼叫做鸭翼,所以这种气动布局其实就是无尾布局加个鸭翼,或者说是主翼缩小水平尾翼放大的常规布局。有了这个鸭翼,无尾布局的缺点得到明显改善,高速飞行时更加稳定,起降距离明显缩短,甚至机动性能比常规布局更加出色。欧洲最为推崇鸭式布局,瑞典的JAS39,英法德西班牙联合研制的欧洲战斗机EU2000,法国的阵风以及以色列的幼师全部采用鸭式布局。可以说目前鸭式布局再次成为航空技术发展的趋势,俄罗斯和美国正在研制新型飞机都在使用这种布局,例如俄罗斯的s37金雕试验机和美国的QSST超音速客机。我国最新研制的歼10猛龙就属于鸭式布局,或者称为无尾鸭翼布局。鸭式气动布局机型——世界第一架飞机飞行者一号鸭式气动布局机型——俄罗斯图144超音速客机鸭式气动布局机型——我国的歼10猛龙战斗机三翼布局,这种布局其实就是常规布局加个鸭翼,或者说鸭式布局加个水平尾翼。这种气动布局的优势是又多了一个可以控制飞机的部位,三个机翼更好的平衡分配载重,机动性能更好,对飞机的操控也更精准更灵活,可以缩短起降距离。缺点是会增加阻力,降低空气动力效率,增加操控系统复杂程度和生产成本。综合评测,常规布局增加鸭翼取得的性能改进得不偿失,所以目前只有俄罗斯苏27的改进型苏30MKI、33、34、35、37系列采用了这种气动布局。三翼气动布局机型——俄罗斯苏37歼击机飞翼布局,这种布局简单说就是只有飞机翅膀的布局,看上去只有机翼,没有机身,机身和机翼融为一体。无疑这种布局是空气动力效率最高的布局,因为所有机身结构都是机翼,都是用于产生升力,而且最大程度低降低了阻力。空气阻力最小所以雷达波反射自然也是最小,所以飞翼布局是隐身性能最好的气动布局。飞翼布局的最大缺陷是操控性能极差,完全依赖电子传感控制机翼和发动机的矢量推力,因此飞翼布局没有得到普及,只应用于用于大型飞机,例如轰炸机、运输机,目前投入使用的只有美国的B2轰炸机。飞翼气动布局机型——美国B2隐形战略轰炸机还有一种奇特的气动布局——前掠翼布局,这种布局的特点是主翼前掠而不是后掠,不过虽然很早就开展了这种气动布局的研制工作,但是因为机翼前掠致命的稳定性问题导致这种技术一直只停留在研发阶段,没有得到实际应用。典型机型有俄罗斯正在研制的S37金雕试验机和美国早已停止研制的X29试验机。前掠翼气动布局机型——俄罗斯S37金雕试验机前掠翼气动布局机型——美国X29试验机现在知道了如何辨别飞机的气动布局了,是不是感觉世界上的飞机不再那么眼花缭乱了?我们要回过头来说说纸飞机了。对于纸飞机来说,最合适的气动布局是无尾布局,因为这种布局结构最稳固,即使用薄的纸折叠也能够保证机翼挺直,即使用力投掷高速飞出,纸飞机的结构也可以抵抗住风压不至于变形太大。无尾布局阻力可以调整到最小,所以可以投掷得更远。其实我们平时折叠的纸飞机都是无尾布局,即使初学者第一次折叠也可以获得很好的滑翔性能,这正验证了无尾气动布局的诸多优点。只不过普通的纸飞机没有垂直尾翼,或者说垂直尾翼在下方,看上去不太漂亮,不过这也算是纸飞机独有的气动布局吧。除了纸飞机,任何飞机都不敢把垂直尾翼放在下面,如何起飞姑且不说,降落时尾巴是注定要遭殃了。升力公式Y =(1/2)ρV2SCy(注V2是V的平方 不会输入上平方符号)。ρ为空气密度、V为飞机与气流的相对速度、S为翼面积、Cy 为升力系数由公式可知影响升力大小的有1.机翼的面积2.机翼形状的升力系数3.空气相对于机翼的流速4.当时的空气密度,其中已空气相对于机翼的流速影响最大,它直接影响到飞机起飞时的升力取得,也就是说为什么飞机起飞前总是要高速滑行的原因,且是逆风滑行,如此才能取得更高的相对速度,好取得更高的升力,还有一般飞机会有襟翼,可以增加机翼面积,飞机在起飞或降落的时候,伸出襟翼(有兴趣可以在搭飞机时往机翼看,起飞降落时飞机机翼前缘及后缘会伸展开来),亦是增加升力方法,除此之外,飞机的升力,还和攻角有关。攻角就是机翼前进方向与气流的夹角,因为角度变化,气流会在上翼面后端产生低压区(与空气分离有关),造成更大的压力差,所以升力变大。但达到临界攻角约12~14 度时,依照机翼断面形状不同,低压区转为乱流,造成失速。以上原文出自: http://m98.cn/html/43/t-1243.html
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-10-20
任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。
竹蜻蜓蕴含着深刻的飞行原理。 飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向 上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产 生向上的升力。
机翼是怎样产生升力的呢?
试验:手持一张白纸的一端,由于重力的作用, 白纸的另一端会自然垂下,我们将白纸拿到嘴前,沿着水平方向吹气,白纸不但没有被吹开,垂下的一端反而飘了起来,这是因为流体力学的基本原理
流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下 面不动的空气小,因此将白纸托了起来。
对于固定翼的飞机,当它在空气中以一定的速度飞行时,根据相对运动的原理,机翼相对于空气的运动可以 看作是机翼不动,而空气气流以一定的速度流过机翼。由于机翼一般是不对称的,上表面比较凸,而下表面比较平, 这使空气在流过机翼时被分为上下两股,流过上表面的空气速度快、压力小,流过下表面的空气速度慢、压力大, 这就在机翼上下产生了一个压力差,这股向上的压力就是飞机的升力,它拖着飞机在空中飞行。本回答被网友采纳
第2个回答  2013-10-20
通过机翼横截面看,机翼上表面凸起,呈抛物线状,下表面基本呈直线,上表面长度大于下表面,当飞机滑跑时,上下表面的气流从机翼前端流至后端时间相同,而由于上表面长,那上表面气流速度比下表面快,压力小于下表面,当上下表面的压力差大于飞机重量,就起飞了,这样说够简单了吧

谁能帮我解析一下飞机翼的奥秘?
鸭式气动布局机型——世界第一架飞机飞行者一号鸭式气动布局机型——俄罗斯图144超音速客机鸭式气动布局机型——我国的歼10猛龙战斗机三翼布局,这种布局其实就是常规布局加个鸭翼,或者说鸭式布局加个水平尾翼。这种气动布局的优势是又多了一个可以控制飞机的部位,三个机翼更好的平衡分配载重,机动性能更好,对飞机的操...

生活中的伯努利现象及其原理解释
1、飞机 飞机机翼的翼型都是经过特殊设计的,当气流经过机翼上下表面时,上表面路程要比下表面长,气流在上表面的流速要比在下表面流速快。根据伯努利定理知,流速大的地方压强小,流速小的地方压强大,因此下表面的压强大于上表面的压强,由此产生压力差,这个压力差就是使飞机飞起来的升力。2、气球 气...

你对飞机机翼的所有疑问,都在这里!
飞行过程中,襟翼和前缘缝翼是提升低速性能的法宝,它们通过增大机翼面积和弯曲度,帮助缩短起降跑道。同时,飞机上独特的放电刷设计,确保了飞行过程中静电的释放,保障了安全。发动机的巧妙布局是飞机设计的另一重点。在波音787中,襟副翼设计整合了襟翼与副翼的功能,既能在起飞降落时增加升力,又能提升高...

飞机为什么会飞?它的动力来源是什么?
飞机起飞原理:飞机机翼的翼型都是经过特殊设计的,当气流经过机翼上下表面时,上表面路程要比下表面长,气流在上表面的流速要比在下表面流速快。根据伯努利定理知,流速大的地方压强小,流速小的地方压强大,因此下表面的压强大于上表面的压强,由此产生压力差,这个压力差就是使飞机飞起来的升力。飞机动力...

为什么飞机会飞
,升力克服自身的重力,将飞机托在空中,在一定范围内飞机机翼的面积与升力成正比,飞机发动机所产生的推力是飞机飞行的动力。这样重于空气的飞机,借助机翼上获得的升力克服自身因地球引力形成的重力,飞机发动机所产生推力做为飞机飞行的动力,从而使飞机翱翔在蓝天上了。这就是飞机飞行的奥秘。

飞机为什么会飞拜托各位大神
飞机会飞在于机翼,机翼像弧形,平面向下,弧面向上。当飞机起跑的速度很快时,机翼上下的流速变快,由于机翼成弧形上下路程不一样,但流速到达不同路程的时间一样,因此机翼上方压强小,下方压强大,所以大气压把飞机托上天去。

飞机是怎么飞起来的
由于机翼上表面是凸起的弧形,其气流流过的距离相对下表面长,气流速度快,气压低,而强大气流从下表面流过,相对上表面距离短,气流速度慢,气压高,所以当强大气流从机翼前端流过机翼后端时就产生一个综合的极大的升力,这个升力与机翼的面积成正比,有了这个升力,就能使飞机在天空中飞行了。

飞机为什么可以飞?
而飞机能够飞,靠的是它的机翼和发动机。飞机的机翼上面是弧线的,下面是平直的,飞机在移动时,机翼上面的空气流动快,机翼下面的空气流动慢,这样就产生了一个向上的升力,飞机也就平稳地飞上天了。另外,飞机里的发动机连接着螺旋桨,螺旋桨转动,带动气流,飞机也就能长时间在天上飞了 ...

飞机为什么会飞哪?
由于机翼两个表面的形状一样,因而气流速度一样,所产生的压力也一样,此时机翼不产生升力。但是当对称机翼以一定的倾斜角(称为攻角或迎角)在空气中运动时,就会出现与非对称机翼类似的流动现象,使得上下表面的压力不一致,从而也会产生升力。这就是飞机能离陆升空并在空中飞行的奥秘。

为什么飞机飞在天上不掉下来?谢谢了,大神帮忙啊
我们来分析一下:由于飞机的机翼上下弧度并不是对称的,上翼面的弧度要大于下翼面,这样当空气流过时机翼上方的流线密,流速大,下方的流线疏,流速小,由伯努利方程可知机翼上方的压强小,下方的压强大,这样就产生了压强差,当压强差体现在翼面上的总压力差大于飞机重量时,飞机就可以飞上天空了。那么...

相似回答