有12个乒乓球,其中一个不合格(或轻或重),用一个托盘天平称三次,如何找出那个不合格的乒乓球?

如题所述

由于不知道异常球到底是轻是重,因此不论怎么分起来称,都会有三种不同的结果,即左边的重量重于、轻于或者等于右边的重量,为了做到 称三次就能把这个不合格的乒乓球找出来,必须把球分成三组(各为四只球)。现在,我们为了解题的方便,把这三组乒乓球分别编号为 A组、B组、C组。

首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况:

第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。

其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:

1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。

称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。

2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。

称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。

以上是第一次称之后出现第一种情况的分析。

第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。

我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。

这时,可以称第二次了。这次称后可能出现的是三种情况:

1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。

这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。

2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3之中。这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球。

以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。

3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。

以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。

根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,其推理过程同上。
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-10-14
分成4份,也许一次就能称出来不等的那份,或许是2次称出,再把不等的那份,也就是3个称一次就能称出那个不等的乒乓球
第2个回答  2013-10-14
分成3 3 3 3共4个 放上天平。。称量2次 可以找出重量不一样的那一组,,,之后称量一次 就可以找出重量不一样的那一个了
第3个回答  2013-10-14
太简单了,把它们分成三组,每组四个乒乓球,称完就知道了。

有12个乒乓球,其中一个不合格(或轻或重),用一个托盘天平称三次,如何找...
回答:由于不知道异常球到底是轻是重,因此不论怎么分起来称,都会有三种不同的结果,即左边的重量重于、轻于或者等于右边的重量,为了做到 称三次就能把这个不合格的乒乓球找出来,必须把球分成三组(各为四只球)。现在,我们为了解题的方便,把这三组乒乓球分别编号为 A组、B组、C组。 首先,选任意的...

有12个乒乓球其中有一个是劣质的,你不知道它是轻还是重。要求只能用秤...
1·天平两边平衡.这样,坏球必在C3、C4中.这是因为,在12个乒乓球中,只有一个是不合格的坏球.只有C1、C2中有一个是坏球时,天平两边才不平衡.既然天平两边平衡了,可见,C1、C2都是合格的好球.称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平...

有十二个乒乓球特征相同,其中只有一个重量异常,现在要求用一部没有砝 ...
平均分3组,每组4个球,取任意两组比较(第一次),有两种情况一、若一样则异球存在于第三组,设为(A、B、C、D)【相比起二的判断,这里字母大小写与结果关】,标准球为T,则接下来取A+B+T:C+T+T(第二次)-①若A+B+T=C+T+T,则D是异球,则取D:T(第三次),--若D>T,...

有12个乒乓球,其中一个质量与众不同,现在给你一个天平,要你称三次...
情况1:如果两边平了,那么坏的肯定是在留着的4个里面.把4个球编号为1,2,3,4.先把1和2拿出来称,如果平了,那么就意味着坏的在3和4里面.那么由于1和2是完好的,于是就把1和3称一下,如果1和3是平的,那么就是4是坏的.如果1和3不平,那么肯定就是3了.(因为1是完好的,1和2同重量).如果1...

有12个乒乓球,其中有一个与其他的不同,不知道是轻是重,怎样用天平称3...
把12个乒乓球3个一组分成4组,标号1、2、3、4;第一步:先把1、2组放在天平上,有两种可能平衡或不平衡;第二部:拿下第2组,放1和3在天平上;如果1、2组平衡1、3组也平衡,说明不同的在第4组;把第四组的编号A、B、C,把A、B放在天平上如果平衡那C就是不同的那个。如果1、2组不...

问十二个乒乓球中有一和其他几个重量不一样,用一个天平秤来称重,只能...
6,7,8,所以5球只可能是标准球或者是偏重的球),若偏轻,则1,2,3中有轻球,任取两个相较即可。1,2,3,5与4,9,10,11相较,若相等,则6,7,8中有重球,任取两个相较即可。1,2,3,5与4,9,10,11相较,若偏重,则5,4中有异常球,任取一个与其他球相较即可。

12个乒乓球,有一个次品,不知轻重,用一台无砝码天平称三次,找出次品,告 ...
这个问题可以借助分组对比的方法解决。这是一道数学竞赛题的问题,其完整的问题是:“有12个乒乓球形状、大小重量完全相同,其中只有一个重量与其他11个不同,现在要求用一部没有砝码的天平称三次,将这个次品球找出来,并确定这个次品球比正品球轻或是比正品球重。”有人会考虑通过二分法来将这个问题...

...问题:有十二个外观完全相同的乒乓球,但其中有一个的重量异常.给你一...
最佳答案 把这12个球编号:1234 5678 ABCD 第一次,天平两边各放4个,比如是 1234 | 5678,有三种可能:1. 两端平衡。说明目标球是在 ABCD 之中;12345678 是正常的。第二次这样称: 123 | ABC。也有三种可能:(1) 两端平衡。说明目标是 D 。(2) 左重右轻。说明目标球在 ABC 之中,且比...

考智商。有十二个乒乓球,其中有一个是坏的。让你用砝码天平称三次,找...
1 异常的一定是 A123其中之一,而且是轻的 那就把 A1与A2称 ,相等则A3为异常球 不等则轻的为异常球;2 异常的一定是B1或A4 那就找个好的和其中一个称一下就行了;3 异常的一定是B2,B3,B4其中一个,而且还是重的,再拿B2与B3称,相等,B4为异常球,否则重的为异常球。

思考题 12个乒乓球中一个次品, 用一个天平秤3次,找出次品,并说明次品比...
1、如平衡说明剩下的1个球有问题。将有问题的球和任意1个球进行第三次称重。可以判断轻或重。2、如不平衡说明这3个球有问题,可以判断出坏球的轻或重(比3个标准球轻,说明问题球轻,反之重)。将3个问题球任意取2个球分别放入天平两边进行第三次称重,如平衡剩下的球是有问题的,可以知道轻...

相似回答