高数之求极限

如题所述

定义:

设{Xn}为一无穷数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时的一切Xn,均有不等式|Xn - a|<ε成立,那么就称常数a是数列{Xn}的极限,或称数列{Xn}收敛于a。记为lim Xn = a 或Xn→a(n→∞)。

扩展资料
’极限思想’方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘初等数学’的基础上有承前启后连贯性的、进一步的思维的发展。

数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体的体积等问题),正是由于其采用了‘极限’的‘无限逼近’的思想方法,才能够得到无比精确的计算答案。

人们通过考察某些函数的一连串数不清的越来越精密的近似值的趋向,趋势,可以科学地把那个量的极准确值确定下来,这需要运用极限的概念和以上的极限思想方法。
温馨提示:内容为网友见解,仅供参考
第1个回答  2018-11-27
123456789
第2个回答  2018-11-27
不懂

高数的极限怎么求?
高数没有八个重要极限公式,只有两个。1、第一个重要极限的公式:lim sinx \/ x = 1 (x->0)当x→0时,sin \/ x的极限等于1;特别注意的是x→∞时,1 \/ x是无穷小,无穷小的性质得到的极限是0。2、第二个重要极限的公式:lim (1+1\/x) ^x = e(x→∞)当x→∞时,(1+1\/x)^...

高数之求极限
设{Xn}为一无穷数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时的一切Xn,均有不等式|Xn - a|<ε成立,那么就称常数a是数列{Xn}的极限,或称数列{Xn}收敛于a。记为lim Xn = a 或Xn→a(n→∞)。

怎么用高数的方法算极限?
1、求极限的时候,只有在积分项相乘并且其极限值为常数的时候才可以代入并提出去。你的第二个表达式,因为它是和式,所以只是分别在求极限而已,不能 直接带成1。详细如图所示:2、高数求极限方法:01 定义法。此法一般用于极限的证明题,计算题很少用到,但仍应熟练掌握,不重视基础知识、基本概念的...

高数函数求极限
1.原式=lim(x→0)(x²-2x+3)\/(2x³+x²+1)=3\/1=3 2.原式=lim(x→0)[(1-3x)^(1\/(-3x))]^[3(x-1)]=e^{lim(x→0)[3(x-1)} =e^(-3)=1\/e³3.原式=lim(x→0){[√(1+sinx)-√(1-sinx)]\/x} =lim(x→0){2(sinx\/x)\/[√(1+sin...

高数求极限,要详细过程?
利用等价无穷小和洛必达法则。

高数极限怎么求
方法总结:1.利用函数的连续性求函数的极限(直接带入即可)如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。2.利用无穷小的性质求函数的极限 性质1:有界函数与无穷小的乘积是无穷小 性质2:常数与无穷小的乘积是无穷小 性质3:有限个无穷小相加、相减...

高数函数的极限怎么求
级数或累次求和:转化极限为级数或累次求和形式,计算极限。积分计算:将极限问题转化为积分求解。微分方程:将极限问题转换为求解微分方程。积素等价:利用积素等价法求解极限。无穷增减变异:通过等价变形,比较函数值大小求极限。不等式:寻找合适的不等式,估量函数极限。递推公式:对于递归函数,利用递推...

高数求极限的方法总结
高数求极限的方法总结如下:1、利用函数的连续性求函数的极限(直接带入即可)如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。2、利用无穷小的性质求函数的极限 性质1:有界函数与无穷小的乘积是无穷小 性质2:常数与无穷小的乘积是无穷小 性质3:有限...

高数求极限,请详细过程
答案是:e^(1\/6)我的过程是利用洛必达法则。过程如下图:

如何用高数的方法证明极限存在?
高数求极限有时候不能直接用1的无穷次方等于e原因:因为1+1\/n+1当n在趋近无穷的时候,它的n+1次方也在同时趋近,两个过程是同步进行的,不能分开处理。lim(x→∞)1^X=lim(x→∞)(1+1\/x)^x=e。自变量趋近无穷值时函数的极限:设函数f(x)当|x| 大于某一正数时有定义,如果存在常数a,...

相似回答