不等式组 x^2-4x+3<0 x^2-6x+8<0 的解集是(2,3)。
(2,3)被包含在不等式 2x^2-9x+a<0 的解集中。
设 2x^2-9x+a<0 的解集是(c,d),则(2,3)被包含于(c,d)。
仅需满足:当x=2,x=3时,2x^2-9x+a<0 成立即可。
因此,当x=2时,有:2×2^2-9×2+a<0;当x=3时,有:2×3^2-9×3+a<0。
解得:a<9。
因此,实数a的取值范围是(-∞,9)。
不等式和集合是一回事吗?
(2)不等式跟上面两个概念就不是一回事了。区间本身就是集合,而不等式充其量只是集合的“描述”的一部分——从(1)中的例子可见一斑。虽然有时候也会用它来表示一个数字范围,但这其实只是一种“简写”或“简称”。例如:不等式x>1,可以用来表示区间(1,+∞)上的数字;但实际上,表示这个...
集合中不等式时什么情况下不等号可以取等于号?
在集合中,当不等式有等于号时,我们称之为「不等号可以取等于号」或「不等式成立」。这意味着在该不等式中,不等号的一侧的值可以等于另一侧的值。具体来说,以下情况下不等号可以取等于号:1. 对于“大于等于”(≥)不等式,例如:a ≥ b,如果a和b相等,那么不等式成立。2. 对于“小于等...
怎么解集合问题的不等式呢?
初中不等式有:1、a+b≥2√(ab)。2、√((a²+b²)\/2)≥(a+b)\/2≥√ab≥2\/(1\/a+1\/b)。3、√(ab)≤(a+b)\/2。4、a²+b²≥2ab。5、ab≤(a+b)²\/4。6、||a|-|b| |≤|a+b|≤|a|+|b|。不等式的解集方法:1、找出未知数的...
集合、不等式、区间,有什么区别?
(1)集合:具有相同性质的一些事物构成的整体;(2)不等式:由不等号(≠、>、<、≥、≤)连接的式子;(3)区间:数轴上连续的一段;分为闭区间、开区间等;可见,集合是一个外延很宽泛的概念;不等式本质和等式一样,表示的是两个事物(通常是数字或表示数字的字母)之间的一种关系;区间,...
不等式和集合的区别
不等式就是表达两个量的关系,不是集合,与集合不是一个概念。集合:表示有特定属性的东西(分类),放在一起。例如所有不等式构成一个集合、所有人构成一个集合。定义集合时经常用不等式定义集合中元素特性。如{n|n是自然数,且100<=n<1000}就把100~999共计900个元素定义成一个集合。
集合、不等式、区间,有什么区别?
不等式的解集就是一个集合。实数x,满足a<x<b,其中a,b∈R.这样的集合{x|a<x<b}就可以表示成一个区间(a, b)。区间一定能表示成集合形式,集合不一定可以表示成区间的形式,只有特殊的集合可以表示成区间的形式。
用不等式构造的集合之间的包含关系
例如:两个集合 S = { x | a < x < b },T = { x | c < x < d }。当 a < c、 b > d 时,S 包含 T。又如:两个集合 S = { x | a < x < b },T = { x | c ≤ x ≤ d }。当 a ≥ c、b ≤ d 时,T 包含 S。
集合,不等式,区间,有什么区别
首先,不等式显然不一样,他是指数轴上的一个点,它的范围,而区间不是一个点,点集一般也不是一个点0<x<+∞是说有一个正实数x(0,+∞)是所有正实数全体虽然{x|0 区间可以用来表示实数的范围,集合也能表示,这时它们是等价的如 (0,1) = {x| 0<x<1}但集合的功能广泛很多,除了数集,...
集合中绝对值不等式怎么求
题目欠具体。只能按照《去绝对值符号》的步骤,来处理了。例如:集合E={a| |a-2|>7,a∈R}.也就是说,集合里的所有元素,必须而且只需满足下列两个不等式(之一),再合并写出来就可以。a-2<-7, a<-5.或者a-2>7, a>9.答案:集合的表示法(原题就是)描述法。另一个表示法,也属于...
数学 集合 不等式3X大于或等于4-2X的解集
3X≥4-2X 5X≥4 X≥4\/5 所以不等式的解集为:[4\/5,+∞)性质 方程(组)或不等式(组)的所有解均在其解集中,解集中的所有元素均为方程(组)或不等式(组)的解。无解的方程(组)或不等式(组)的解集为空集。线性代数里向量(或矩阵)方程的解集是向量(或矩阵),这类元素构成集合,...