有12个球,其中11个重量相等,只有1个不一样,不知是轻还是重.用天平秤三次,找出这个球.

如题所述

用无码天平称乒乓球的重量,每称一次会有几种结果?有三种不同的结果,即左边的重量重于、轻于或者等于右边的重量,为了做到 称三次就能把这个不合格的乒乓球找出来,必须把球分成三组(各为四只球)。现在,我们为了解题的方便,把这三组乒乓球分别编号为 A组、B组、C组。

首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况:

第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。

其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:

1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。

称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。

2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。

称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。

以上是第一次称之后出现第一种情况的分析。

第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。

我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。

这时,可以称第二次了。这次称后可能出现的是三种情况:

1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。

这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。

2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3之中。这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球。

以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。

3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。

以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。
温馨提示:内容为网友见解,仅供参考
第1个回答  2009-01-18
先随便拿出来4个。剩下的8个4个4个撑量。要是天平平衡了就在拿出来的4个里。要是有偏转就在2份中的1份。在把那份的4个 2个2个称就OK了

这个问题,看似简单,其实相当复杂,下面是抄来的答案:

把12个球编成1,2......12号,则可设计下面的称法:

左盘 *** 右盘

第一次 1,5,6,12 *** 2,3,7,11

第二次 2,4,6,10 *** 1,3,8,12

第三次 3,4,5,11 *** 1,2,9,10

每次都可能有平、左重、右重三种结果,搭配起来共有27种结果,但平、平、平的结果不会出现,因为总有一个球是不相等的。同样左、左、左,右、右、右的结果也不回出现,因为根据设计的称法,没有一个球是三次都在左边或右边的。剩下的24种结果就可以判断出哪种情况是哪一个球了。例如:如果结果是平、平、左或是平、平、右,就可判断出是9号球,因为第一次与第二次都没有9号球,唯独第三次有9号球,而第一次与第二次都是平的,只有第三次是失衡的,说明9号球的重量与其它的球不同。可依据此原理判断出其它的各种情况分别是哪个球。

有12个球,而坏球又可能比好球轻也可能比好球重,所以总共有12x2=24种可能,24可能结果如下表:
************ ********** ************ **********
* 可 能 * -* 结 果 * * 可 能 *-* 结 果 *
************ ********** ************ **********
1号球,且重 -左、右、右 1号球,且轻 -右、左、左
2号球,且重 -右、左、右 2号球,且轻 -左、右、左
3号球,且重 -右、右、左 3号球,且轻 -左、左、右
4号球,且重 -平、左、左 4号球,且轻 -平、右、右
5号球,且重 -左、平、左 5号球,且轻 -右、平、右
6号球,且重 -左、左、平 6号球,且轻 -右、右、平
7号球,且重 -右、平、平 7号球,且轻 -左、平、平
8号球,且重 -平、右、平 8号球,且轻 -平、左、平
9号球,且重 -平、平、右 9号球,且轻 -平、平、左
10号球,且重-平、左、右 10号球,且轻-平、右、左
11号球,且重-右、平、左 11号球,且轻-左、右、平
12号球,且重-左、右、平 12号球,且轻-左、右、平

上面的24种结果里面没有一个重复的,也可以把上面的结果反过来当成可能,也可唯一的推出那个球为坏球,证明此方法可行。
第2个回答  2009-01-20
不用这么复杂吧

有12个球,其中11个重量相等,只有1个不一样,不知是轻还是重.用天平秤三...
1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分...

...一个不清楚是重还是轻.请用三次天平,找出这个球.
1、取两组分别放在天平两边,如果平衡接下来就好做了;如果不平衡,假设轻的一边的标为p,重的一边的标为q.2、取2个p一个q放在天平左边,2个p一个q放在天平右边,这时会有一个轻重关系.如果平衡则好办;如果左边重,则左边的2个p和右边的q都不可能是坏球;如果右边重,则左边的q和右边的2个p都不...

...没有砝码的天平,使用天平3次把重量不同的球找出来。
首先将12只球分成3组 第一次:任意取其中的两组放在天平的两边 如果相等,那么不同的求在另外的一组中 相信大家知道接下来的办法了 如果不等,那么必有一组重于另一组 定重的一组为A组(A1,A2,A3,A4)轻的一组为B组(B1,B2,B3,B4)另外一组为C组(C1,C2,C3,C4)(那么如果不同...

有12个球,其中11个正品重量相同,一个次品,用天平称3次,请找出次品,确 ...
1.如果右重则7号是坏球且比标准球重;2.如果平衡则8号是坏球且比标准球重;3.如果左重则6号是坏球且比标准球重。2.如果天平平衡,则坏球在9-12号。第二次将1-3号放在左边,9-11号放在右边。1.如果右重则坏球在9-11号且坏球较重。第三次将9号放在左边,10号放在右边。1.如果右重则...

12个球 ,11个同样重,1个是轻是重不知道,用天平称分3次称,找出那个球...
把第一队和第二队称重~这时有三种情况~分别是:1.前两队一样重~2.第一队比第二队重~3.第一队比第二队轻 第1种情况:说明有问题的球是9-12中的一个~那就把9和10先称~再把9和11再称~如果9和10和11都一样沉那12就有问题~如果9跟10和11其中一个不一样沉那就是跟那个不一样哪个就不...

有12个球,11个重量相等,1个是异重球,问怎样能在天平上称三次就找出那 ...
首先,把12个小球分成三等份,每份四只。拿出其中两份放到天平两侧称(第一次)情况一:天平是平衡的。那么那八个拿上去称的小球都是正常的,特殊的在四个里面。把剩下四个小球拿出三个放到一边,另一边放三个正常的小球(第二次)如天平平衡,特殊的是剩下那个。如果不平衡,在天平上面的那三个里...

有12个球,11个重量相等,1个是异重球,问怎样能在天平上称三次就找出那 ...
1,第二步结果如果天平保持原样,那说明从较轻拿到较重的那三个球和新拿进去的标准的那三个球重量一样,所以不标准的球是较重组被拿出三个球后剩下那个和较轻组被拿出三个球后剩下那个,2个球里找一个,用一个标准球一称就知道了。2,第二步结果如果天平平衡,说明这8个球都是标准的,那不...

12个球 其中11个是相同质量 另一个未知质量 用天平称三次 怎么才能把不...
1.如果右重则12号是坏球且比标准球重;2.这次不可能平衡;3.如果左重则12号是坏球且比标准球轻。3.如果左重则坏球在9-11号且坏球较轻。第三次将9号放在左边,10号放在右边。1.如果右重则9号是坏球且比标准球轻;2.如果平衡则11号是坏球且比标准球轻;3.如果左重则10号是坏球且比...

测试题,十二个球有十一个重量大小都一样,有一个重量不同,用天平测三...
A1:显然在唯一一个未称过的那个球,这种情况无法知道它是轻还是重;这是找到了,而且只用到了两次称天平。A2:如果不平衡,我们可以将下沉的那边的除去标准球外的球标上+,轻的那个标上-号,结果无非在 +、+、-、或-、-、+三个球中,去其中的一个+、-放在天平的一端,取第一次的8个标准球...

12个小球,其中11个一模一样,而有1个外表一样,但质量不一样(不知道是...
一、若平,则次球在C中,取C中三个球C1、C2、C3与三个好球(A、B中任意三个球)称,(一)若平,则次球为C4,将之与A、B中任意一球称,即可知其轻重;(二)若不平,则次球在C1、C2、C3中,且已知其轻重,则取C1、C2称,1、若平,则次球为C3,已知轻重,2、若不平,则由轻重可...

相似回答
大家正在搜