ysinx+cos(x-y)=0,求dy/dx|(x=π/2)

如题所述

第1个回答  2022-07-25
两边对x求导:dy/dxsinx+ycosx-sin(x-y)(1-dy/dx)=0,将x=π/2带入已知方程得到y,再把x、y带入上式求得结果

ysinx+cos(x-y)=0,求dy\/dx|(x=π\/2)
两边对x求导:dy\/dxsinx+ycosx-sin(x-y)(1-dy\/dx)=0,将x=π\/2带入已知方程得到y,再把x、y带入上式求得结果

由方程ysinx-cos(x+y)=0确定隐函数y(x),求dy|(0,π\/2)
两边求导:y'sinx+ycosx+sin(x+y)*(1+y')=0 令x=0,y=π\/2:π\/2+1+y'=0 y'=-(π\/2+1)dy=-(π\/2+1)dx

由方程ysinx-cos(x+y)=0确定隐函数y(x),求dy|(0,π\/2)
两边求导:y'sinx+ycosx+sin(x+y)*(1+y')=0 令x=0,y=π\/2:π\/2+1+y'=0 y'=-(π\/2+1)dy=-(π\/2+1)dx

已知ysinx-cos(x+y)=0,求在点(0,π\/2)的dy\/dx值
ysinx-cos(x+y)=0,两边对x求导,得 y'sinx+ycosx+(1+y')sin(x+y)=0,解得 y'=-[ycosx+sin(x+y)]\/[sinx+sin(x+y)]dy\/dx=y'(0,π\/2)=-(π\/2+1)\/(0+1)=-(π\/2+1)

设隐函数y=y(x)由方程ycosx+sin(x-y)=0所确定,求dy
方法如下,请作参考:

由方程ysinx-cos(x-y)=0所确定的函数的导数dy\/dx
ysinx-cos(x-y)=0所确定的函数的导数dy\/dx是:y'= dy\/dx = [ycosx + sin(x-y)]\/[sin(x-y) - sinx]计算过程如下:方程两边同时求导,得到下面式子:y'sinx+ycosx+sin(x-y) (1-y') = 0 整理可得 y'[sinx -sin(x-y)] = -ycosx - sin(x-y)所以 y'=[ycosx + sin(x...

已知ysinx-cos(x+y)=0,求在点(0,π)的dy\/dx值
y'*sinx+ycosx- [-sin(x+y)*(1+y')]=0 y'(sinx+sin(x+y))=y(1-cosx)y'=[1-cosx]\/[sinx+sin(x+y)]0\/0所以需要洛必达 先关于x y'=[sinx]\/[cosx+cos(x+y)(1+y')]所以y'[cosx+cos(x+y)(1+y')]=sinx 令x->0 y'[1+cosy *(1+y')]=0 令y->pi y'[1-...

ysinx-cos(x+y)=0,求 dy\/dx
应用复合函数求导方法,y′sinx+ycosx+(1+y′)sin(x+y)=0,(sinx+sin(x+y))y′+ycosx+sin(x+y)=0,y′=-(ycosx+sin(x+y))\/(sinx+sin(x+y)).故 dy\/dx=y′=-(ycosx+sin(x+y))\/(sinx+sin(x+y)).

设ysinx-cos(x-y)=0 求dy
y'*sinx+y*cosx+(1-y')sin(x-y)=0 解出y'dy=y'dx

已知y*sinx-cos(x-y)=0,求dy的值?
因为 y*sinx-cos(x-y)=0 则:d(ysinx)-dcos(x-y)=0 即:sinxdy+dcosxdx+sin(x-y)(dx-dy)=0 整理得:[sin(x-y)-sinx]dy=[ycosx+sin(x-y)]dx 所以:dy=[ycosx+sin(x-y)]dx\/[sin(x-y)-sinx]

相似回答
大家正在搜