ysinx-cos(x-y)=0所确定的函数的导数dy/dx是:
y'= dy/dx = [ycosx + sin(x-y)]/[sin(x-y) - sinx]
计算过程如下:
方程两边同时求导,得到下面式子:
y'sinx+ycosx+sin(x-y) (1-y') = 0
整理可得
y'[sinx -sin(x-y)] = -ycosx - sin(x-y)
所以
y'=[ycosx + sin(x-y)]/[sin(x-y) - sinx]
扩展资料:
常用的导数公式
1、C'=0(C为常数);
2、(Xn)'=nX(n-1) (n∈R);
3、(sinX)'=cosX;
4、(cosX)'=-sinX;
5.(aX)'=aXIna (ln为自然对数);
6、(logaX)'=1/(Xlna) (a>0,且a≠1);
7、(secX)'=tanX secX;
8、(cscX)'=-cotX cscX;
由方程ysinx-cos(x-y)=0所确定的函数的导数dy\/dx
ysinx-cos(x-y)=0所确定的函数的导数dy\/dx是:y'= dy\/dx = [ycosx + sin(x-y)]\/[sin(x-y) - sinx]计算过程如下:方程两边同时求导,得到下面式子:y'sinx+ycosx+sin(x-y) (1-y') = 0 整理可得 y'[sinx -sin(x-y)] = -ycosx - sin(x-y)所以 y'=[ycosx + sin(x...
已知y*sinx-cos(x-y)=0,求dy的值?
因为 y*sinx-cos(x-y)=0 则:d(ysinx)-dcos(x-y)=0 即:sinxdy+dcosxdx+sin(x-y)(dx-dy)=0 整理得:[sin(x-y)-sinx]dy=[ycosx+sin(x-y)]dx 所以:dy=[ycosx+sin(x-y)]dx\/[sin(x-y)-sinx]
求由方程ysinx-cos(xy)=0所确定的隐函数y=y(x)的导数dy\/dx
y'sinx+ycosx=-sin(xy)(y+xy')y'=-y(sin(xy)+cosx)\/(sinx+xsin(xy))
ysinx-cos(x+y)=0,求 dy\/dx
(sinx+sin(x+y))y′+ycosx+sin(x+y)=0,y′=-(ycosx+sin(x+y))\/(sinx+sin(x+y)).故 dy\/dx=y′=-(ycosx+sin(x+y))\/(sinx+sin(x+y)).
设ysinx-cos(x-y)=0 求dy
y'*sinx+y*cosx+(1-y')sin(x-y)=0 解出y'dy=y'dx
求下列方程所确定的函数的导数ysinx-cos(x-y)=0
ysinx=cos(x-y)同时求导数 y'sinx+ycosx=(x-y)'sin(y-x)y'sinx+ycosx=(1-y')sin(y-x)y'sinx+ycosx=sin(y-x)-y'sin(y-x)y'sinx+y'sin(y-x)=sin(y-x)-ycosx y'[sinx+sin(y-x)]=sin(y-x)-ycosx y'=[sin(y-x)-ycosx]\/[sinx+sin(y-x)]...
隐函数的导数
将方程右边化为0,那么 ysinx-cos(x-y)=0 令F(x,y)=ysinx-cos(x-y)dy\/dx=-Fx\/Fy=-(ycosx+sin(x-y))\/(sinx-sin(x-y))注意:求Fx,Fy时,分别将y,x看出一个常量来求
已知ysinx-cos(x+y)=0,求在点(0,π)的dy\/dx值
)]=0 y'(sinx+sin(x+y))=y(1-cosx)y'=[1-cosx]\/[sinx+sin(x+y)]0\/0所以需要洛必达 先关于x y'=[sinx]\/[cosx+cos(x+y)(1+y')]所以y'[cosx+cos(x+y)(1+y')]=sinx 令x->0 y'[1+cosy *(1+y')]=0 令y->pi y'[1-(1+y')]=0 (y')^2=0,y'=0 ...
设函数y=y(x)由方程y=sinx-sin(x+y)=0所确定,求dy\/dx
两边同时对x求导有dy\/dx=cosx-cos(x+y)*dy\/dx,合并同类项之后有 (1+cos(x+y))dy\/dx=cosx 所以dy\/dx=cosx\/(1+cos(x+y))希望能采纳,谢谢
ysin(x)-cos(x–y)=0所确定的y=y(x)的微分
隐函数求导,y看做x的函数 y'sinx+ycosx+(1-y')sin(x-y)=0 整理 y‘=【ycosx+sin(x-y)】\/【sin(x-y)-sinx】 因为 y' = dy\/dx 所以dy=【ycosx+sin(x-y)】\/【sin(x-y)-sinx】 * dx