ysinx-cos(x+y)=0,求 dy\/dx
故 dy\/dx=y′=-(ycosx+sin(x+y))\/(sinx+sin(x+y)).
已知ysinx-cos(x+y)=0,求在点(0,π\/2)的dy\/dx值
ysinx-cos(x+y)=0,两边对x求导,得 y'sinx+ycosx+(1+y')sin(x+y)=0,解得 y'=-[ycosx+sin(x+y)]\/[sinx+sin(x+y)]dy\/dx=y'(0,π\/2)=-(π\/2+1)\/(0+1)=-(π\/2+1)
已知ysinx-cos(x+y)=0,求在点(0,π)的dy\/dx值
所以y'[cosx+cos(x+y)(1+y')]=sinx 令x->0 y'[1+cosy *(1+y')]=0 令y->pi y'[1-(1+y')]=0 (y')^2=0,y'=0
设函数y=y(x)由方程y=sinx-sin(x+y)=0所确定,求dy\/dx
两边同时对x求导有dy\/dx=cosx-cos(x+y)*dy\/dx,合并同类项之后有 (1+cos(x+y))dy\/dx=cosx 所以dy\/dx=cosx\/(1+cos(x+y))希望能采纳,谢谢
由方程ysinx-cos(x-y)=0所确定的函数的导数dy\/dx
ysinx-cos(x-y)=0所确定的函数的导数dy\/dx是:y'= dy\/dx = [ycosx + sin(x-y)]\/[sin(x-y) - sinx]计算过程如下:方程两边同时求导,得到下面式子:y'sinx+ycosx+sin(x-y) (1-y') = 0 整理可得 y'[sinx -sin(x-y)] = -ycosx - sin(x-y)所以 y'=[ycosx + sin(x...
ysinx+cos(x-y)=0,求dy\/dx|(x=π\/2)
两边对x求导:dy\/dxsinx+ycosx-sin(x-y)(1-dy\/dx)=0,将x=π\/2带入已知方程得到y,再把x、y带入上式求得结果
求由方程ysinx-cos(xy)=0所确定的隐函数y=y(x)的导数dy\/dx
ysinx=cos(xy)两边分别求导 y'sinx+ycosx=-sin(xy)(y+xy')y'=-y(sin(xy)+cosx)\/(sinx+xsin(xy))
隐函数的导数
回答:将方程右边化为0,那么 ysinx-cos(x-y)=0 令F(x,y)=ysinx-cos(x-y) dy\/dx=-Fx\/Fy=-(ycosx+sin(x-y))\/(sinx-sin(x-y)) 注意:求Fx,Fy时,分别将y,x看出一个常量来求
已知y*sinx-cos(x-y)=0,求dy的值?
因为 y*sinx-cos(x-y)=0 则:d(ysinx)-dcos(x-y)=0 即:sinxdy+dcosxdx+sin(x-y)(dx-dy)=0 整理得:[sin(x-y)-sinx]dy=[ycosx+sin(x-y)]dx 所以:dy=[ycosx+sin(x-y)]dx\/[sin(x-y)-sinx]
由方程ysinx-cos(x+y)=0确定隐函数y(x),求dy|(0,π\/2)
两边求导:y'sinx+ycosx+sin(x+y)*(1+y')=0 令x=0,y=π\/2:π\/2+1+y'=0 y'=-(π\/2+1)dy=-(π\/2+1)dx