怎样用74161设计一个同步十进制计数器电路

要求有状态转换图,越详细越好,高分悬赏,谢谢
最好有用max+pluse做的电路图

3)按计数增减分:加法计数器,减法计数器,加/减法计数器.
7.3.1 异步计数器
一,异步二进制计数器
1,异步二进制加法计数器
分析图7.3.1 由JK触发器组成的4位异步二进制加法计数器.
分析方法:由逻辑图到波形图(所有JK触发器均构成为T/ 触发器的形式,且后一级触发器的时钟脉冲是前一级触发器的输出Q),再由波形图到状态表,进而分析出其逻辑功能.
2,异步二进制减法计数器
减法运算规则:0000-1时,可视为(1)0000-1=1111;1111-1=1110,其余类推.

注:74LS163的引脚排列和74LS161相同,不同之处是74LS163采用同步清零方式.
(2)CT74LS161的逻辑功能
①=0时异步清零.C0=0
②=1,=0时同步并行置数.
③==1且CPT=CPP=1时,按照4位自然二进制码进行同步二进制计数.
④==1且CPT·CPP=0时,计数器状态保持不变.
4,反馈置数法获得N进制计数器
方法如下:
·写出状态SN-1的二进制代码.
·求归零逻辑,即求置数控制端的逻辑表达式.
·画连线图.
(集成计数器中,清零,置数均采用同步方式的有74LS163;均采用异步方式的有74LS193,74LS197,74LS192;清零采用异步方式,置数采用同步方式的有74LS161,74LS160;有的只具有异步清零功能,如CC4520,74LS190,74LS191;74LS90则具有异步清零和异步置9功能.等等)
试用CT74LS161构成模小于16的N进制计数器
5,同步二进制加/减计数器
二,同步十进制加法计数器
8421BCD码同步十进制加法计数器电路分析
三,集成同计数器
1,集成十进制同步加法计数器CT74LS160
(1)CT74LS160的引脚排列和逻辑功能示意图
图7.3.3 CT74LS160的引脚排列图和逻辑功能示意图
(2)CT74LS160的逻辑功能
①=0时异步清零.C0=0
②=1,=0时同步并行置数.
③==1且CPT=CPP=1时,按照BCD码进行同步十进制计数.
④==1且CPT·CPP=0时,计数器状态保持不变.
2.集成十进制同步加/减计数器CT74LS190
其逻辑功能示意图如教材图7.3.15所示.功能如教材表7.3.10所示.
集成计数器小结:
集成十进制同步加法计数器74160,74162的引脚排列图,逻辑功能示意图与74161,74163相同,不同的是,74160和74162是十进制同步加法计数器,而74161和74163是4位二进制(16进制)同步加法计数器.此外,74160和74162的区别是,74160采用的是异步清零方式,而74162采用的是同步清零方式.
74190是单时钟集成十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74191相同.74192是双时钟集成十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74193相同.
7.3.3 利用计数器的级联获得大容量N进制计数器
计数器的级联是将多个计数器串接起来,以获得计数容量更大的N进制计数器.
1,异步计数器一般没有专门的进位信号输出端,通常可以用本级的高位输出信号驱动下一级计数器计数,即采用串行进位方式来扩展容量.
举例:74LS290
(1)100进制计数器
(2)64进制计数器
2,同步计数器有进位或借位输出端,可以选择合适的进位或借位输出信号来驱动下一级计数器计数.同步计数器级联的方式有两种,一种级间采用串行进位方式,即异步方式,这种方式是将低位计数器的进位输出直接作为高位计数器的时钟脉冲,异步方式的速度较慢.另一种级间采用并行进位方式,即同步方式,这种方式一般是把各计数器的CP端连在一起接统一的时钟脉冲,而低位计数器的进位输出送高位计数器的计数控制端.
举例:74161
(1)60进制
(2)12位二进制计数器(慢速计数方式)
12位二进制计数器(快速计数方式)
7.4 寄存器和移位寄存器
寄存器是由具有存储功能的触发器组合起来构成的.一个触发器可以存储1位二进制代码,存放n位二进制代码的寄存器,需用n个触发器来构成.
按照功能的不同,可将寄存器分为基本寄存器和移位寄存器两大类.基本寄存器只能并行送入数据,需要时也只能并行输出.移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移,数据既可以并行输入,并行输出,也可以串行输入,串行输出,还可以并行输入,串行输出,串行输入,并行输出,十分灵活,用途也很广.
7.4.1 基本寄存器
概念:在数字电路中,用来存放二进制数据或代码的电路称为寄存器.
1,单拍工作方式基本寄存器
无论寄存器中原来的内容是什么,只要送数控制时钟脉冲CP上升沿到来,加在并行数据输入端的数据D0~D3,就立即被送入进寄存器中,即有:
2.双拍工作方式基本寄存器
(1)清零.CR=0,异步清零.即有:
(2)送数.CR=1时,CP上升沿送数.即有:
(3)保持.在CR=1,CP上升沿以外时间,寄存器内容将保持不变.
7.4.2 移位寄存器
1.单向移位寄存器
四位右移寄存器:
时钟方程:
驱动方程:
状态方程:
右移位寄存器的状态表:
输入
现态
次态
说明
Di CP
1 ↑
1 ↑
1 ↑
1 ↑
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
连续输入4个1
单向移位寄存器具有以下主要特点:
单向移位寄存器中的数码,在CP脉冲操作下,可以依次右移或左移.
n位单向移位寄存器可以寄存n位二进制代码.n个CP脉冲即可完成串行输入工作,此后可从Q0~Qn-1端获得并行的n位二进制数码,再用n个CP脉冲又可实现串行输出操作.
若串行输入端状态为0,则n个CP脉冲后,寄存器便被清零.
2.双向移位寄存器
M=0时右移 M=1时左移

3.集成双向移位寄存器74LS194
CT74LS194的引脚排列图和逻辑功能示意图:
CT74LS194的功能表:
工作状态
0 × × ×
1 0 0 ×
1 0 1 ↑
1 1 0 ↑
1 1 1 ×
异步清零
保 持
右 移
左 移
并行输入
7.4.3 移位寄存器的应用
一,环形计数器
1,环形计数器是将单向移位寄存器的串行输入端和串行输出端相连, 构成一个闭合的环.
结构特点:,即将FFn-1的输出Qn-1接到FF0的输入端D0.
工作原理:根据起始状态设置的不同,在输入计数脉冲CP的作用下,环形计数器的有效状态可以循环移位一个1,也可以循环移位一个0.即当连续输入CP脉冲时,环形计数器中各个触发器的Q端或端,将轮流地出现矩形脉冲.
实现环形计数器时,必须设置适当的初态,且输出Q3Q2Q1Q0端初始状态不能完全一致(即不能全为"1"或"0"),这样电路才能实现计数, 环形计数器的进制数N与移位寄存器内的触发器个数n相等,即N=n
2,能自启动的4位环形计数器
状态图:
由74LS194构成的能自启动的4位环形计数器
时序图
二,扭环形计数器
1,扭环形计数器是将单向移位寄存器的串行输入端和串行反相输出端相连,构成一个闭合的环.
实现扭环形计数器时,不必设置初态.扭环形计数器的进制数
N与移位寄存器内的触发器个数n满足N=2n的关系
结构特点为:,即将FFn-1的输出接到FF0的输入端D0.
状态图:
2,能自启动的4位扭环形计数器
7.4.4 顺序脉冲发生器
在数字电路中,能按一定时间,一定顺序轮流输出脉冲波形的电路称为顺序脉冲发生器.
顺序脉冲发生器也称脉冲分配器或节拍脉冲发生器,一般由计数器(包括移位寄存器型计数器)和译码器组成.作为时间基准的计数脉冲由计数器的输入端送入,译码器即将计数器状态译成输出端上的顺序脉冲,使输出端上的状态按一定时间,一定顺序轮流为1,或者轮流为0.前面介绍过的环形计数器的输出就是顺序脉冲,故可不加译码电路即可直接作为顺序脉冲发生器.
一,计数器型顺序脉冲发生器
计数器型顺序脉冲发生器一般用按自然态序计数的二进制计数器和译码器构成.
举例:用集成计数器74LS163和集成3线-8线译码器74LS138构成的8输出顺序脉冲发生器.
二,移位型顺序脉冲发生器
◎移位型顺序脉冲发生器由移位寄存器型计数器加译码电路构成.其中环形计数器的输出就是顺序脉冲,故可不加译码电路就可直接作为顺序脉冲发生器.
◎时序图:
◎由CT74LS194构成的顺序脉冲发生器
见教材P233的图7.4.6和图7.4.7
7.5 同步时序电路的设计(略)
7.6 数字系统一般故障的检查和排除(略)
本章小结
计数器是一种应用十分广泛的时序电路,除用于计数,分频外,还广泛用于数字测量,运算和控制,从小型数字仪表,到大型数字电子计算机,几乎无所不在,是任何现代数字系统中不可缺少的组成部分.
计数器可利用触发器和门电路构成.但在实际工作中,主要是利用集成计数器来构成.在用集成计数器构成N进制计数器时,需要利用清零端或置数控制端,让电路跳过某些状态来获得N进制计数器.
寄存器是用来存放二进制数据或代码的电路,是一种基本时序电路.任何现代数字系统都必须把需要处理的数据和代码先寄存起来,以便随时取用.
寄存器分为基本寄存器和移位寄存器两大类.基本寄存器的数据只能并行输入,并行输出.移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移,数据可以并行输入,并行输出,串行输入,串行输出,并行输入,串行输出,串行输入,并行输出.
寄存器的应用很广,特别是移位寄存器,不仅可将串行数码转换成并行数码,或将并行数码转换成串行数码,还可以很方便地构成移位寄存器型计数器和顺序脉冲发生器等电路.
在数控装置和数字计算机中,往往需要机器按照人们事先规定的顺序进行运算或操作,这就要求机器的控制部分不仅能正确地发出各种控制信号,而且要求这些控制信号在时间上有一定的先后顺序.通常采取的方法是,用一个顺序脉冲发生器来产生时间上有先后顺序的脉冲,以控制系统各部分协调地工作.
顺序脉冲发生器分计数型和移位型两类.计数型顺序脉冲发生器状态利用率高,但由于每次CP信号到来时,可能有两个或两个以上的触发器翻转,因此会产生竞争冒险,需要采取措施消除.移位型顺序脉冲发生器没有竞争冒险问题,但状态利用率低.

由JK触发器组成的4位异步二进制减法计数器的工作情况分析略.
二,异步十进制加法计数器
由JK触发器组成的异步十进制加法计数器的由来:在4位异步二进制加法计数器的基础上经过适当修改获得.
有效状态:0000——1001十个状态;无效状态:1010~1111六个状态.
三,集成异步计数器CT74LS290
为了达到多功能的目的,中规模异步计数器往往采用组合式的结构,即由两个独立的计数来构成整个的计数器芯片.如:
74LS90(290):由模2和模5的计数器组成;
74LS92 :由模2和模6的计数器组成;
74LS93 :由模2和模8的计数器组成.
1.CT74LS290的情况如下.
(1)电路结构框图和逻辑功能示意图
(2)逻辑功能
如下表7.3.1所示.
注:5421码十进制计数时,从高位到低位的输出为.
2,利用反馈归零法获得N(任意正整数)进制计数器
方法如下:
(1)写出状态SN的二进制代码.
(2)求归零逻辑(写出反馈归零函数),即求异步清零端(或置数控制端)信号的逻辑表达式.
(3)画连线图.
举例:试用CT74LS290构成模小于十的N进制计数器.
CT74LS290则具有异步清零和异步置9功能.讲解教材P215的[例7.3.1].
注:CT74LS90的功能与CT74LS290基本相同.
7.3.2 同步计数器
一,同步二进制计数器
1.同步二进制加法计数器
2,同步二进制减法计数器
3,集成同步二进制计数器CT74LS161
(1)CT74LS161的引脚排列和逻辑功能示意图
注:74LS163的引脚排列和74LS161相同,不同之处是74LS163采用同步清零方式.
(2)CT74LS161的逻辑功能
①=0时异步清零.C0=0
②=1,=0时同步并行置数.
③==1且CPT=CPP=1时,按照4位自然二进制码进行同步二进制计数.
④==1且CPT·CPP=0时,计数器状态保持不变.
4,反馈置数法获得N进制计数器
方法如下:
·写出状态SN-1的二进制代码.
·求归零逻辑,即求置数控制端的逻辑表达式.
·画连线图.
(集成计数器中,清零,置数均采用同步方式的有74LS163;均采用异步方式的有74LS193,74LS197,74LS192;清零采用异步方式,置数采用同步方式的有74LS161,74LS160;有的只具有异步清零功能,如CC4520,74LS190,74LS191;74LS90则具有异步清零和异步置9功能.等等)
试用CT74LS161构成模小于16的N进制计数器
5,同步二进制加/减计数器
二,同步十进制加法计数器
8421BCD码同步十进制加法计数器电路分析
三,集成同计数器
1,集成十进制同步加法计数器CT74LS160
(1)CT74LS160的引脚排列和逻辑功能示意图
图7.3.3 CT74LS160的引脚排列图和逻辑功能示意图
(2)CT74LS160的逻辑功能
①=0时异步清零.C0=0
②=1,=0时同步并行置数.
③==1且CPT=CPP=1时,按照BCD码进行同步十进制计数.
④==1且CPT·CPP=0时,计数器状态保持不变.
2.集成十进制同步加/减计数器CT74LS190
其逻辑功能示意图如教材图7.3.15所示.功能如教材表7.3.10所示.
集成计数器小结:
集成十进制同步加法计数器74160,74162的引脚排列图,逻辑功能示意图与74161,74163相同,不同的是,74160和74162是十进制同步加法计数器,而74161和74163是4位二进制(16进制)同步加法计数器.此外,74160和74162的区别是,74160采用的是异步清零方式,而74162采用的是同步清零方式.
74190是单时钟集成十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74191相同.74192是双时钟集成十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74193相同.
7.3.3 利用计数器的级联获得大容量N进制计数器
计数器的级联是将多个计数器串接起来,以获得计数容量更大的N进制计数器.
1,异步计数器一般没有专门的进位信号输出端,通常可以用本级的高位输出信号驱动下一级计数器计数,即采用串行进位方式来扩展容量.
举例:74LS290
(1)100进制计数器
(2)64进制计数器
2,同步计数器有进位或借位输出端,可以选择合适的进位或借位输出信号来驱动下一级计数器计数.同步计数器级联的方式有两种,一种级间采用串行进位方式,即异步方式,这种方式是将低位计数器的进位输出直接作为高位计数器的时钟脉冲,异步方式的速度较慢.另一种级间采用并行进位方式,即同步方式,这种方式一般是把各计数器的CP端连在一起接统一的时钟脉冲,而低位计数器的进位输出送高位计数器的计数控制端.
举例:74161
(1)60进制
(2)12位二进制计数器(慢速计数方式)
12位二进制计数器(快速计数方式)
7.4 寄存器和移位寄存器
寄存器是由具有存储功能的触发器组合起来构成的.一个触发器可以存储1位二进制代码,存放n位二进制代码的寄存器,需用n个触发器来构成.
按照功能的不同,可将寄存器分为基本寄存器和移位寄存器两大类.基本寄存器只能并行送入数据,需要时也只能并行输出.移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移,数据既可以并行输入,并行输出,也可以串行输入,串行输出,还可以并行输入,串行输出,串行输入,并行输出,十分灵活,用途也很广.
7.4.1 基本寄存器
概念:在数字电路中,用来存放二进制数据或代码的电路称为寄存器.
1,单拍工作方式基本寄存器
无论寄存器中原来的内容是什么,只要送数控制时钟脉冲CP上升沿到来,加在并行数据输入端的数据D0~D3,就立即被送入进寄存器中,即有:
2.双拍工作方式基本寄存器
(1)清零.CR=0,异步清零.即有:
(2)送数.CR=1时,CP上升沿送数.即有:
(3)保持.在CR=1,CP上升沿以外时间,寄存器内容将保持不变.
7.4.2 移位寄存器
1.单向移位寄存器
四位右移寄存器:
时钟方程:
驱动方程:
状态方程:
右移位寄存器的状态表:
输入
现态
次态
说明
Di CP
1 ↑
1 ↑
1 ↑
1 ↑
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
连续输入4个1
单向移位寄存器具有以下主要特点:
单向移位寄存器中的数码,在CP脉冲操作下,可以依次右移或左移.
n位单向移位寄存器可以寄存n位二进制代码.n个CP脉冲即可完成串行输入工作,此后可从Q0~Qn-1端获得并行的n位二进制数码,再用n个CP脉冲又可实现串行输出操作.
若串行输入端状态为0,则n个CP脉冲后,寄存器便被清零.
2.双向移位寄存器
M=0时右移 M=1时左移

3.集成双向移位寄存器74LS194
CT74LS194的引脚排列图和逻辑功能示意图:
CT74LS194的功能表:
工作状态
0 × × ×
1 0 0 ×
1 0 1 ↑
1 1 0 ↑
1 1 1 ×
异步清零
保 持
右 移
左 移
并行输入
7.4.3 移位寄存器的应用
一,环形计数器
1,环形计数器是将单向移位寄存器的串行输入端和串行输出端相连, 构成一个闭合的环.
结构特点:,即将FFn-1的输出Qn-1接到FF0的输入端D0.
工作原理:根据起始状态设置的不同,在输入计数脉冲CP的作用下,环形计数器的有效状态可以循环移位一个1,也可以循环移位一个0.即当连续输入CP脉冲时,环形计数器中各个触发器的Q端或端,将轮流地出现矩形脉冲.
实现环形计数器时,必须设置适当的初态,且输出Q3Q2Q1Q0端初始状态不能完全一致(即不能全为"1"或"0"),这样电路才能实现计数, 环形计数器的进制数N与移位寄存器内的触发器个数n相等,即N=n
2,能自启动的4位环形计数器
状态图:
由74LS194构成的能自启动的4位环形计数器
时序图
二,扭环形计数器
1,扭环形计数器是将单向移位寄存器的串行输入端和串行反相输出端相连,构成一个闭合的环.
实现扭环形计数器时,不必设置初态.扭环形计数器的进制数
N与移位寄存器内的触发器个数n满足N=2n的关系
结构特点为:,即将FFn-1的输出接到FF0的输入端D0.
状态图:
2,能自启动的4位扭环形计数器
7.4.4 顺序脉冲发生器
在数字电路中,能按一定时间,一定顺序轮流输出脉冲波形的电路称为顺序脉冲发生器.
顺序脉冲发生器也称脉冲分配器或节拍脉冲发生器,一般由计数器(包括移位寄存器型计数器)和译码器组成.作为时间基准的计数脉冲由计数器的输入端送入,译码器即将计数器状态译成输出端上的顺序脉冲,使输出端上的状态按一定时间,一定顺序轮流为1,或者轮流为0.前面介绍过的环形计数器的输出就是顺序脉冲,故可不加译码电路即可直接作为顺序脉冲发生器.
一,计数器型顺序脉冲发生器
计数器型顺序脉冲发生器一般用按自然态序计数的二进制计数器和译码器构成.
举例:用集成计数器74LS163和集成3线-8线译码器74LS138构成的8输出顺序脉冲发生器.
二,移位型顺序脉冲发生器
◎移位型顺序脉冲发生器由移位寄存器型计数器加译码电路构成.其中环形计数器的输出就是顺序脉冲,故可不加译码电路就可直接作为顺序脉冲发生器.
◎时序图:
◎由CT74LS194构成的顺序脉冲发生器
见教材P233的图7.4.6和图7.4.7
7.5 同步时序电路的设计(略)
7.6 数字系统一般故障的检查和排除(略)
本章小结
计数器是一种应用十分广泛的时序电路,除用于计数,分频外,还广泛用于数字测量,运算和控制,从小型数字仪表,到大型数字电子计算机,几乎无所不在,是任何现代数字系统中不可缺少的组成部分.
计数器可利用触发器和门电路构成.但在实际工作中,主要是利用集成计数器来构成.在用集成计数器构成N进制计数器时,需要利用清零端或置数控制端,让电路跳过某些状态来获得N进制计数器.
寄存器是用来存放二进制数据或代码的电路,是一种基本时序电路.任何现代数字系统都必须把需要处理的数据和代码先寄存起来,以便随时取用.
寄存器分为基本寄存器和移位寄存器两大类.基本寄存器的数据只能并行输入,并行输出.移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移,数据可以并行输入,并行输出,串行输入,串行输出,并行输入,串行输出,串行输入,并行输出.
寄存器的应用很广,特别是移位寄存器,不仅可将串行数码转换成并行数码,或将并行数码转换成串行数码,还可以很方便地构成移位寄存器型计数器和顺序脉冲发生器等电路.
在数控装置和数字计算机中,往往需要机器按照人们事先规定的顺序进行运算或操作,这就要求机器的控制部分不仅能正确地发出各种控制信号,而且要求这些控制信号在时间上有一定的先后顺序.通常采取的方法是,用一个顺序脉冲发生器来产生时间上有先后顺序的脉冲,以控制系统各部分协调地工作.
顺序脉冲发生器分计数型和移位型两类.计数型顺序脉冲发生器状态利用率高,但由于每次CP信号到来时,可能有两个或两个以上的触发器翻转,因此会产生竞争冒险,需要采取措施消除.移位型顺序脉冲发生器没有竞争冒险问题,但状态利用率低.
温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-09-04
标题:图8 30状态移位计数器的PSP ICE模拟 F ig.8 PSP ICE s im u lation of th irty-state sh ift coun ter
篇名:双边沿移位寄存器的设计原理及其应用
说明:数器.作者对设计出的30状态移位计数器进行PSP ICE模拟,其工作波形如图8所示.图中,起始状态为11110,中止状态为11101.其逻辑功能达到了设计CJFD2004

标题:图1单光子干涉和路由实验原理简图LD为激光器,attn为衰减器,cir为环形器,C为耦合器,PC1,PC2,PC3和PC4为偏振控制器,PM1和PM2为相位调制器,SSG为同步信号发生器,cnt为光子计数器,DSG为延迟信号发生器,D1和D2为单光子探测器
篇名:光纤Sagnac干涉仪中单光子干涉及路由控制
说明:如图1所示,由分束比为50%:50%耦合器(C)、4个偏振控制器(PC1,PC2,PC3,PC4)、两个相位调制器(PM1,PM2)和长距离光纤连接成Sagnac环形干涉仪.CJFD2004

标题:图1十进制计数器的顶层原理图
篇名:基于EDA软件ispLEVER的现代数字系统设计
说明:(2)打开原理图编辑器,画出十进制计数器的顶层原理图,如图1所示。需要说明的是不同的数字系统其引脚锁定是不一样的,为了便于在实验箱验证蒀JFD2004

标题:图1定时器/计数器1的电路结构
篇名:PIC16F87X单片机异步计数器的应用
说明:定时器/计数器1的电路结构如图1.当TMR 1CS=1时选择计数器工作方式,当TMR 1CS=0时选择定时器工作方式.在计数器工作方式下外部计数信号的引CJFD2004

标题:图1模为12的计数器电原理图
篇名:在数字电路教学中引入现代EDA技术
说明:以使用74161设计一个模为12的加法计数器为例,电原理图如图1所示.其中引脚的安排:en为使能端;clear为清零端;clk为时钟;q0\q1\q2\q3为信号碈JFD2004

标题:图1传统8421码十进制递增计数器电路实现 F ig.1 C ircu it rea lization of dec im a l up-coun ter encoded by 8421BCD 图2多码分配后的十进制计数器状态卡诺图 F ig.2 K-m ap of dec im a l up-coun ter bym u lti-code state ass igm en t
篇名:多码技术在低功耗十进制计数器设计中的应用
说明:根据激励函数,就可以设计出基于8421码的同步十进制计数器电路,如图1所示.

标题:图2多码分配后的十进制计数器状态卡诺图 F ig.2 K-m ap of dec im a l up-coun ter bym u lti-code state ass igm en t
篇名:多码技术在低功耗十进制计数器设计中的应用
说明:在传统的8421码编码中,可看到编码状态冗余24-10=6个.利用多码分配技术,对状态进行重新分配,图2是根据6=3+3,分成两个四码编码后分配得到的CJFD2004

标题:图3多码分配后的门控8421码十进制计数器电路实现 F ig.3 C ircu it rea lization of dec im a l up-coun ter by clock-gated and m u lti-code state ass igm en t
篇名:多码技术在低功耗十进制计数器设计中的应用
说明:比较前后两次激励函数可知,经过多码分配后,部分地增加了组合电路的复杂性,同时,容易看到Q3具有最高的优先权,即当Q3=1时,Q2、Q1的值就可以CJFD2004

标题:图4余三循环码十进制计数器状态卡诺图 F ig.4 S tate K-m ap of dec im a l up-coun ter encoded byexcess three code
篇名:多码技术在低功耗十进制计数器设计中的应用
说明:P=12Cl·VD2D·fclk·Esw,式中,Cl为该节点的物理电容,VDD为电源电压,fclk为时钟频率,Esw(称为开关活动性)是每个时钟周期1/fclk中的平均输CJFD2004

标题:图5余三循环码十进制计数器电路实现 F ig.5 C ircu it rea lization of dec im a l up-coun ter encoded by excess three code
篇名:多码技术在低功耗十进制计数器设计中的应用
说明:Q′0=Q3Q1+Q3Q2Q1.其实现电路如图5.同样,这种编码不可避免地存在有冗余状态.表2、图6是根据6=3+3,分成两个四码编码分配得到的非冗余状态稢JF

参考资料:http://define.cnki.net/webforms/imageResult.aspx?searchword=%E8%AE%A1%E6%95%B0%E5%99%A8&page=7

本回答被提问者采纳
第2个回答  2009-01-09
1010 2,4位反馈,大概就这样。你加50分我明天给你做一个,现在想睡觉。。。

怎样用74161设计一个同步十进制计数器电路
1,异步二进制加法计数器 分析图7.3.1 由JK触发器组成的4位异步二进制加法计数器. 分析方法:由逻辑图到波形图(所有JK触发器均构成为T\/ 触发器的形式,且后一级触发器的时钟脉冲是前一级触发器的输出Q),再由波形图到状态表,进而分析出其逻辑功能. 2,异步二进制减法计数器 减法运算规则:0000-1时,可视为(1)...

74161怎么用置数法实现十进制计数的?
使用置数法实现74161的十进制计数:当74161计数到Q3Q2Q1Q0=1001时,使LD' =0,为置数创造了条件。当下一个计数脉冲一到,各置数端数据立即送到输出端,预置数端D3D2D1D0= 0000。电路如图所示,在连续计数脉冲的作用下,计数器开始从0000、0001、...1000、1001循环计数 (8421码十进制计数器)。

用74161怎样设计一个十进制计数器电路???
用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

怎么分别用反馈清零法和反馈置数法将74LVC161接成十进制计数器
同步清零和同步置数 74ls92反馈清零 同步置数法例题 开机清零电路 反馈清零法 反馈清零反馈置数区分 其他类似问题2013-08-06 74ls161十进制计数器(反馈清零法) 6 2013-05-29 用74160和门电路设计一个五十进制计数器(注:74160是... 15 2014-12-10 采用vhdl设计具有异步清零功能的同步十进制计数器 ...

急求用74ls161和00芯片设计的十进制计数器电路图(标好管脚的)!!!明天...
74161的引脚它标注的和书上的不同,但是是一样的,ENP,ENT就是书上的计数使能端CEP、CET,CLK就是时钟端CP,MR为清零端CR,RCO为进位端TC。LOAD为置数端。采用的是反馈清零法,十进制0000(十进制数0)到1001(十进制数9)的0~9的计数器。Q0和Q1端引出接了一个两输入与非门。

74161是怎么实现同步置数的?
所谓同步置数,就是在置数控制端LOAD加低电平后,在下一个时钟脉冲信号到来时,计数器才被置数,置数的初值由ABCD四个脚输入。74161的到脚见下图。

分别用集成计数器74161 4位同步二进制加法计数器芯片的反馈清零法和反馈...
分别用集成计数器74161 4位同步二进制加法计数器芯片的反馈清零法和反馈置数法实现10进制计数器!会的快给答案啊!谢谢啦!急求 txgchzjj | 浏览1276 次 |举报 我有更好的答案推荐于2017-12-16 11:55:47 最佳答案 清零法:Q0(14)和Q3(11)接到与非门,与非门接Rd(1)置数法:Q3(11)接非门,非门接Ld(9)...

同步二进制计数器74LS161功能表如下表所示,试分析下图为几进制计数器...
这是一个十进制计数器。分析如下:由电路图可以看出,74LS161具有同步置数和计数两种功能。当输出端Q₃Q₂Q₁Qⅽ=1001时,通过与非门使LD'=0,74161进入同步置数阶段,到下一个CP上升沿来到时,置数端信号0000出现在输出端,这时LD'=1,74161进入计数阶段,下一个状态就...

用两片74161和基本逻辑门构成逢十进一的二十四进制计数器 求逻辑...
U1是低4位,U2是高4位。U1利用与非门反馈组成10进制计数器,U2由于最大只到2不需要组成10进制。两个计数器级联,当高4位为0010,低4位为0100(24),与非门输出低电平,两个计数器置0,构成24进制。

74161是怎么实现同步置数的?
所谓同步置数,就是在置数控制端LOAD加 低电平 后,在下一个时钟脉冲信号到来时,计数器才被置数,置数的初值由ABCD四个脚输入。74161的到脚见下图。

相似回答