1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+...+1/(2015*2016)
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...+(1/2015-1/2016)
=1/1-1/2016
=2015/2016
1÷1×2+1÷2×3+1÷3×4+……+1÷2015×2016=2015\/2016
=(1\/1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)+...+(1\/2015-1\/2016)=1\/1-1\/2016 =2015\/2016
一除以一乘二加一除以二乖三加一………加一除以二千零一十五加二千零...
裂项法:1÷(1×2)+1÷(2×3)+……+1÷(2015×2016)=1-1\/2+1\/2-1\/3+……+1\/2015-1\/2016 =1-1\/2016 =2015\/2016
若1\/1*2+1\/2*3+1\/3*4+……+1\/n(n+1)>2015\/2016,则自然数n的最小值...
解:1\/(1×2)+ 1\/(2×3)+ 1\/(3×4)+...+1\/[n(n+1)]>2015\/2016 1 -1\/2 +1\/2 -1\/3 +1\/3 -1\/4+...+1\/n -1\/(n+1)>2015\/2016 1- 1\/(n+1)>2015\/2016 不等式两边同乘以2016(n+1)2016(n+1)-2016>2015(n+1)n+1>2016 n>2015 n为自然数,n≥2016 自然数...
1\/1x2+1\/2x3+1\/3x4+……+1\/2014x2015+1\/2015x2016
利用裂项相消法,可以计算出结果,过程及结果如下
二分之一乘二左宽二分之一乘三分之一加三分之一乘四分
1\/1×2+1\/2×3+1\/3×4+……+1\/2015×2016 =1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/2015-1\/2016 =1-1\/2016 =2015\/2016
(1+1÷2)╳(1+1÷3)╳…(1+1÷2015)等于多少?
原式=3\/2x4\/3x5\/4x...x2015\/2014x2016\/2015 =2016\/2 =1008 先把每个括号化成假分数,然后前一个的分子和后一个的分母相同,可以约分,最后剩下第一个分母和最后一个分子。望采纳
简便计算:1×2+2×3+...+2015×2016
解:1×2+2×3+...+2015×2016 =2015x(2014+2016)=2015x|(4000+30)=8060000+60450 =8120450
1×2分之二+2×3分之二+3×4分之二+……+2015+2016分之二
原式=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)……+(1\/2015-1\/2016)]=2[1-1\/2016]=2015\/1008。
数学1\/1×4+1\/2×5+1\/3×6+1\/2013×2016=
1\/1×4+1\/2×5+1\/3×6……+1\/2013×2016 =1\/3×(1-1\/4+1\/2-1\/5+1\/3-1\/6……+1\/2013-1\/2016)=1\/3×(1+1\/2+1\/3-1\/2014-1\/2015-1\/2016)=1\/3×(11\/2-4031\/4062240)
1x2\/2+2x3\/2+3x4\/2...2015x2016\/2
2\/(1X2)+2\/(2X3)+2\/(3X4)+...+2\/(2015X2016)=2X[1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/2015-1\/2016]=2X(1-1\/2016)=2X(2015\/2016)=2015\/1008 =1又1008分之1007