在此根据长期使用 IGBT 的经验并参考有关文献对 IGBT 的门极驱动问题做了一些总结,希望对广大 IGBT 应用人员有一定的帮助。
1 IGBT 门极驱动要求
1.1 栅极驱动电压
因 IGBT 栅极 - 发射极阻抗大,故可使用 MOSFET 驱动技术进行驱动,但 IGBT 的输入电容较 MOSFET 大,所以 IGBT 的驱动偏压应比 MOSFET 驱动所需偏压强。图 1 是一个典型的例子。在 +20 ℃情况下,实测 60 A , 1200 V 以下的 IGBT 开通电压阀值为 5 ~ 6 V ,在实际使用时,为获得最小导通压降,应选取 Ugc ≥ (1.5 ~ 3)Uge(th) ,当 Uge 增加时,导通时集射电压 Uce 将减小,开通损耗随之减小,但在负载短路过程中 Uge 增加,集电极电流 Ic 也将随之增加,使得 IGBT 能承受短路损坏的脉宽变窄,因此 Ugc 的选择不应太大,这足以使 IGBT 完全饱和,同时也限制了短路电流及其所带来的应力 ( 在具有短路工作过程的设备中,如在电机中使用 IGBT 时, +Uge 在满足要求的情况下尽量选取最小值,以提高其耐短路能力 ) 。
1.2 对电源的要求
对于全桥或半桥电路来说,上下管的驱动电源要相互隔离,由于 IGBT 是电压控制器件,所需要的驱动功率很小,主要是对其内部几百至几千皮法的输入电容的充放电,要求能提供较大的瞬时电流,要使 IGBT 迅速关断,应尽量减小电源的内阻,并且为防止 IGBT 关断时产生的 du/dt 误使 IGBT 导通,应加上一个 -5 V 的关栅电压,以确保其完全可靠的关断 ( 过大的反向电压会造成 IGBT 栅射反向击穿,一般为 -2 ~ 10 V 之间 ) 。
1.3 对驱动波形的要求
从减小损耗角度讲,门极驱动电压脉冲的上升沿和下降沿要尽量陡峭,前沿很陡的门极电压使 IGBT 快速开通,达到饱和的时间很短,因此可以降低开通损耗,同理,在 IGBT 关断时,陡峭的下降沿可以缩短关断时间,从而减小了关断损耗,发热量降低。但在实际使用中,过快的开通和关断在大电感负载情况下反而是不利的。因为在这种情况下, IGBT 过快的开通与关断将在电路中产生频率很高、幅值很大、脉宽很窄的尖峰电压 Ldi/dt ,并且这种尖峰很难被吸收掉。此电压有可能会造成 IGBT 或其他元器件被过压击穿而损坏。所以在选择驱动波形的上升和下降速度时,应根据电路中元件的耐压能力及 du/dt 吸收电路性能综合考虑。
1.4 对驱动功率的要求
由于 IGBT 的开关过程需要消耗一定的电源功率,最小峰值电流可由下式求出:
I GP = △ U ge /R G +R g ;
式中△ Uge=+Uge+|Uge| ; RG 是 IGBT 内部电阻; Rg 是栅极电阻。
驱动电源的平均功率为:
P AV =C ge △ Uge 2 f,
式中. f 为开关频率; Cge 为栅极电容。
1.5 栅极电阻
为改变控制脉冲的前后沿陡度和防止震荡,减小 IGBT 集电极的电压尖峰,应在 IGBT 栅极串上合适的电阻 Rg 。当 Rg 增大时, IGBT 导通时间延长,损耗发热加剧; Rg 减小时, di/dt 增高,可能产生误导通,使 IGBT 损坏。应根据 IGBT 的电流容量和电压额定值以及开关频率来选取 Rg 的数值。通常在几欧至几十欧之间 ( 在具体应用中,还应根据实际情况予以适当调整 ) 。另外为防止门极开路或门极损坏时主电路加电损坏 IGBT ,建议在栅射间加入一电阻 Rge ,阻值为 10 k Ω左右。
1.6 栅极布线要求
合理的栅极布线对防止潜在震荡,减小噪声干扰,保护 IGBT 正常工作有很大帮助。
a .布线时须将驱动器的输出级和 lGBT 之间的寄生电感减至最低 ( 把驱动回路包围的面积减到最小 ) ;
b .正确放置栅极驱动板或屏蔽驱动电路,防止功率电路和控制电路之间的耦合;
c .应使用辅助发射极端子连接驱动电路;
d .驱动电路输出不能和 IGBT 栅极直接相连时,应使用双绞线连接 (2 转/ cm) ;
e .栅极保护,箝位元件要尽量靠近栅射极。
1.7 隔离问题
由于功率 IGBT 在电力电子设备中多用于高压场合,所以驱动电路必须与整个控制电路在电位上完全隔离,主要的途径及其优缺点如表 1 所示。
表1 驱动电路与控制电路隔离的途径及优缺点
利用光电耦合器进行隔离
优点:体积小、结构简单、应用方便、输出脉宽不受限制,适用于 PWM 控制器
缺点
1 、共模干扰抑制不理想
2 、响应速度慢,在高频状态下应用受限制
3 、需要相互隔离的辅助电源
利用脉冲变压器进行隔离
优点:响应速度快,共模干扰抑制效果好
缺点:
1 、信号传送的最大脉冲宽度受磁芯饱和特性的限制,通常不大于 50 %,最小脉宽受磁化电流限制
2 、受漏感及集肤影响,加工工艺复杂
2 典型的门极驱动电路介绍
2.1 脉冲变压器驱动电路
脉冲变压器驱动电路如图 2 所示, V1 ~ V4 组成脉冲变压器一次侧驱动电路,通过控制 V1 、 V4 和 V2 、 V3 的轮流导通,将驱动脉冲加至变压器的一次侧,二次侧通过电阻 R1 与 IGBT5 栅极相连, R1 、 R2 防止 IGBT5 栅极开路并提供充放电回路, R1 上并联的二极管为加速二极管,用以提高 IGBT5 的开关速度,稳压二极管 VS1 、 VS2 的作用是限制加在 IGBT5g-e 端的电压,避免过高的栅射电压击穿栅极。栅射电压一般不应超过 20 V 。
图 2 脉冲变压器驱动电路
2.2光耦隔离驱动电路
光耦隔离驱动电路如图 3 所示。由于 IGBT 是高速器件,所选用的光耦必须是小延时的高速型光耦,由 PWM 控制器输出的方波信号加在三极管 V1 的基极, V1 驱动光耦将脉冲传递至整形放大电路 IC1 ,经 IC1 放大后驱动由 V2 、 V3 组成的对管 (V2 、 V3 应选择β >100 的开关管 ) 。对管的输出经电阻 R1 驱动 IGBT4 , R3 为栅射结保护电阻, R2 与稳压管 VS1 构成负偏压产生电路, VS1 通常选用 1 W/5.1 V 的稳压管。此电路的特点是只用 1 组供电就能输出正负驱动脉冲,使电路比较简洁。
图 3 光耦隔离驱动电路
2.3 驱动模块构成的驱动电路
应用成品驱动模块电路来驱动 IGBT ,可以大大提高设备的可靠性,目前市场上可以买到的驱动模块主要有:富士的 EXB840、841,三菱的 M57962L,落木源的KA101、KA102,惠普的 HCPL316J、3120 等。这类模块均具备过流软关断、高速光耦隔离、欠压锁定、故障信号输出功能。由于这类模块具有保护功能完善、免调试、可靠性高的优点,所以应用这类模块驱动 IGBT 可以缩短产品开发周期,提高产品可靠性。 EXB840 和 M57962 很多资料都有介绍,KA101和KA102的资料可以从百度搜索,这里就简要介绍一下惠普公司的 HCPL316J 。典型电路如图 4 所示。
图 4 由驱动模块构成的驱动电路
HCPL316J 可以驱动 150 A/1200 V 的 IGBT ,光耦隔离, COMS/TTL 电平兼容,过流软关断,最大开关速度 500 ns ,工作电压 15 ~ 30 V ,欠压保护。输出部分为三重复合达林顿管,集电极开路输出。采用标准 SOL-16 表面贴装。
HCPL316J 输入、输出部分各自排列在集成电路的两边,由 PWM 电路产生的控制信号加在 316j 的第 1 脚,输入部分需要 1 个 5 V 电源, RESET 脚低电平有效,故障信号输出由第 6 脚送至 PWM 的关闭端,在发生过流情况时及时关闭 PWM 输出。输出部分采用 +15 V 和 -5 V 双电源供电,用于产生正负脉冲输出, 14 脚为过流检测端,通过二极管 VDDESAT 检测 IGBT 集电极电压,在 IGBT 导通时,如果集电极电压超过 7 V ,则认为是发生了过流现象, HCPL316J 慢速关断 IGBT ,同时由第 6 脚送出过流信号。
3、 结语
通过对 IGBT 门极驱动特点的分析及典型应用电路的介绍,使大家对 IGBT 的应用有一定的了解。可作为设计 IGBT 驱动电路的参考。
igbt驱动器是什么意思?
IGBT驱动器是一种电力开关元器件,在现代工业中广泛应用。IGBT驱动器可以控制大电流电压高的电路,让电路中的电子元件能够稳定运行和高效转换能量。IGBT驱动器主要由IGBT芯片、驱动芯片和支持电路组成,通过这些部件的协同作用,IGBT驱动器可以实现对元器件的高速、可靠、精确控制。IGBT驱动器广泛应用于许多领域...
igbt的驱动电路工作的原理是什么
igbt的驱动电路工作原理IGBT(InsulatedGateBipolarTransistor)是一种双极型绝缘栅晶体管,它是由一个N沟道场效应晶体管和一个P沟道场效应晶体管组成的双极型晶体管。它的工作原理是,当IGBT的栅极电压达到一定的阈值时,IGBT就会从关断状态转变为导通状态,从而使电路中的电流流动。当IGBT的栅极电压低于一定...
igbt驱动原理是什么
总的来说,IGBT驱动原理是通过控制IGBT的栅极电压来实现其导通和断开,从而实现控制电路中的电流。
igbt驱动电路原理是什么
igbt驱动电路原理IGBT(Insulated-GateBipolarTransistor)驱动电路的原理是通过控制IGBT的门源电压来控制其导通与断开。当门源电压高于一定的阈值电压,IGBT导通;当门源电压低于该阈值电压,IGBT断开。驱动电路的主要功能是提供一个适当的门源电压来控制IGBT的导通和断开,并且需要保证其具有足够的电流能力来驱动IGBT...
igbt驱动模块原理是什么
IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)驱动模块是一种驱动IGBT进行开关操作的设备。它的主要作用是提供足够的驱动电压和电流,确保IGBT能够快速、可靠地开启和关闭。IGBT驱动模块的工作原理主要基于以下几点:1. 隔离与驱动: IGBT驱动模块为了确保控制信号与高功率IGBT开关之间的电气隔离...
电磁炉igbt的驱动电路原理是什么
电磁炉igbt的驱动电路原理IGBT(InsulatedGateBipolarTransistor)驱动电路的原理是通过控制IGBT的栅极电压来控制其导通状态。在驱动电路中,通常使用反激电路来控制栅极电压。当IGBT的栅极电压达到一定的阈值时,IGBT就会导通,从而使电磁炉加热。反之,当IGBT的栅极电压降低到一定的阈值时,IGBT就会断开,从而使...
igbt是什么
1、IGBT是绝缘栅双极型晶体管,是由BJT双极型三极管和MOS绝缘栅型场效应管组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大。MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。2、IGBT综合了两种...
igbt驱动模块工作的原理是什么
IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)驱动模块的工作原理涉及到对IGBT的控制和驱动。以下是简要的工作原理:IGBT基本结构: IGBT是一种混合型功率半导体器件,结合了MOSFET(金属氧化物半导体场效应晶体管)和Bipolar Junction Transistor(双极晶体管)的优点。它有一个门极(类似于...
igbt是什么驱动信号
绝缘栅双极晶体管IGBT安全工作,它集功率晶体管GTR和功率场效应管MOSFET的优点于一身,自关断、开关频率高(10-40kHz)的特点,是发展最为迅速的新一代电力电子器件。广泛应用于小体积、高效率的变频电源、电机调速、UPS及逆变焊机当中。IGBT的驱动和保护是其应用中的关键技术。igbt驱动电路是驱动igbt模块以...
igbt驱动的简介
1 IGBT 门极驱动要求1.1 栅极驱动电压因 IGBT 栅极 - 发射极阻抗大,故可使用 MOSFET 驱动技术进行驱动,但 IGBT 的输入电容较 MOSFET 大,所以 IGBT 的驱动偏压应比 MOSFET 驱动所需偏压强。图 1 是一个典型的例子。在 +20 ℃情况下,实测 60 A , 1200 V 以下的 IGBT 开通电压阀值为 5 ...